
Copyright Melanie Nelson 2007

Biological Database Design
Week 2

Winter ‘07
Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2007

Final Project: Reminder!
Design a database to store biological data. The
database must integrate at least two sources of
data.
Can work alone or in teams of up to three members
Week 4: Hand in plan

What type of biological data will be stored
Scope statement (what aspects of the data are to be
covered by your database)

Week 6: Hand in and present design
Requirements document
ER or UML diagram
Short (1-2 page) report describing any difficult or unusual
design decisions
Make 10-15 minute presentation about DB to class

Copyright Melanie Nelson 2007

Database Design Process

Process = steps to follow
Increases chances of project success

Encourages thinking about entire project before
developing (less likely to get a patchwork data
model)
Find problems early, when its easier (and
cheaper!) to fix them

Process doesn’t have to be onerous. Tailor to
the needs of your team.

Copyright Melanie Nelson 2007

Attributes of a Good Process

Involves all “stakeholders” (people who have
a stake in outcome of project)

Documents requirements

Produces a well-documented database

Tests that the requirements have been met

Copyright Melanie Nelson 2007

Parts of a Standard Process

Plan
Gather and document requirements
Develop a project plan (how long will it take? Who will be
involved?)

Design
Design DB and applications to access it

Develop
Create database, code applications

Test
Does system meet all requirements?

Deploy

Copyright Melanie Nelson 2007

“Waterfall” Process

Plan

Design

Develop

Test
Traditional waterfall process is
generally too rigid: most real
projects will use a modified
version or a more flexible
process

Deploy

Copyright Melanie Nelson 2007

Variations
Prototyping

Often used to help explore requirements and design
options
Shouldn’t allow prototype to morph into final app

Agile programming
“Extreme programming” is one version of this
Eliminates formal design: design is part of development
An attempt to mitigate risk of changing requirements
Difficult to do with databases
Biological databases may be particularly inappropriate for
this technique

Copyright Melanie Nelson 2007

Step 1: Plan

Gather database requirements
What is the scope of the database?
What data will be stored?
What relationships among the data must be
captured?
What questions will need to be asked of the data?
How quickly do the answers need to be
generated?
When must the final system be ready?

Copyright Melanie Nelson 2007

Attributes of Good Requirements

Requirements should be testable
Need to be able to certify that the final system meets them

Requirements come from the users and the data
Ask users what they need
Document what the data requires

Developers must also agree to requirements
Agree only to what is feasible!

Some requirements may contradict each other
Return to the users to get priorities

Copyright Melanie Nelson 2007

Requirements
Ways to determine requirements:

User interviews
Prototyping

Unspoken tool: developers’ experience
Users do not always know what is possible, and
they self-edit in interviews
Difficulty in determining complexity level

Scientists may over-simplify complex relationships when
explaining to a non-scientist (teacher mode)
Some complexities may fall outside scope of database

Copyright Melanie Nelson 2007

Step 2: Design

Developers determine how to meet the
requirements
Logical data model is developed
Physical database design is developed
Usually requires returning to the users for:

Clarification of requirements
Understanding data for the data model

Strong temptation to short-change this step
and rush to development

Copyright Melanie Nelson 2007

Logical Data Model vs. Physical
Database Design

Logical data model reflects structure of data
Accurately capture meaning of data
Accurately reflect relationships amongst the data

Physical database design
How tables will be structured
Reflects any compromises necessary due to
limitations of current database management
systems

Copyright Melanie Nelson 2007

Design Tools

Many tools to develop data model
ERWin
ER Studio
DBDesigner (free: http://www.fabforce.net)

Most tools will automatically generate SQL to
create database from data model

Physical database design may not completely
mirror logical data model
Be sure to document logical data model as well as
physical design

Copyright Melanie Nelson 2007

Step 3: Develop

Database is created
Initial data is imported

If there is no initial data, a test set should be used
Initial version of the application is written
Beware of “feature creep”

Tendency to add features after the design is
complete
Rule of thumb: Only add if initial release will be
useless without the feature. Otherwise, promise in
a later release

Copyright Melanie Nelson 2007

Step 4: Test

Test database with data that is:
Real
Representative
Attempts to cover “pathological” cases

Test “incorrect” data, too
Database should reject

Application is tested
Application code may enforce some business
rules
Application is the “public face” of the database

Copyright Melanie Nelson 2007

Step 5: Deploy

“Roll out” database and application
Don’t forget training!

Since domain support is weak, users decide what
values are actually valid
If users can’t make the application work, they will
consider the project a failure

Copyright Melanie Nelson 2007

Data Modeling

Model is a representation of our
understanding of reality
Data model reflects the database designer’s
understanding of the data to be stored
Don’t build a database without one!

Data model is always implicit in database design
Should be made explicit

Copyright Melanie Nelson 2007

Tools for Data Modeling

Entity-relationship diagrams
Data is modeled as entities and relationships
among entities
Most common in database design

UML (Unified Modeling Language)
Data is modeled as classes and relationships
among classes
More formal types of relationships
Common in object-oriented programming

Copyright Melanie Nelson 2007

Entity-Relationship Diagrams

There are many different types
Differ primarily in syntax
Pick one and be consistent
For this class, I’ll use IDEF1X standard
If you’re using a tool that doesn’t support
IDEF1X, provide me with a mapping from
IDEF1X to the syntax your tool uses

Copyright Melanie Nelson 2007

Entity-Relationship Diagrams

Entity = a noun
A thing or concept about which information will be
stored

Entities have attributes
Information about the entity
Each particular instance of an entity only has one
copy of each attribute
“capital city” is an attribute of “country”
“ally” is not an attribute: a country can have
multiple allies

Copyright Melanie Nelson 2007

Entities and Attributes

Bio_mol_id
Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Entities are
named

The attributes in the
primary key are listed
above the line

All other attributes
are listed below the
line

Copyright Melanie Nelson 2007

Entity-Relationship Diagrams

“Multicopy” attributes are really other entities
There are relationships among entities

Relationships are often named to indicate their
meaning
Relationships have cardinality:

how many instances of one entity can reference the
other entity
default is “zero, one, or many”

Copyright Melanie Nelson 2007

Basic Relationships

Bio_mol_id
Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Bio_sequence
Bio_seq_id

Bio_mol_id (FK)
Species
Source_database
Seq_text

Circle goes on the
child entity: the
entity that references
the parent entity

P

“P” indicates that there must be at least
one bio_sequence per bio_molecule, but
that there may be more.

Dotted line indicates that
this is a non-identifying
relationship: bio_mol_id
is not part of the primary
key of bio_sequence

Copyright Melanie Nelson 2007

Basic Relationships

Bio_mol_id
Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule
Bio_molecule_name
Bio_mol_id (FK)
Bio_mol_name

Solid line indicates that
this is an identifying
relationship: bio_mol_id
is part of the primary key
of bio_mol_name

Rounded corners on
bio_mol_name indicates that it
is identifier-dependent: it
depends on bio_molecule for
identification

Lack of number or letter on
circle indicates that there can
be zero, one or many
bio_mol_names for each
bio_molecule

Copyright Melanie Nelson 2007

Recursive and Optional Relationships

Bio_mol_id
Primary_name
Bio_mol_type_code
Function_desc
Expressed_bio_mol_id (O, FK)

Bio_molecule

Codes for

Diamond indicates that
not all child entries
reference a parent entry

If the relationship can be
descrbed with
something more than
“has”, the description is
associated with the
relationship line

Relationships can be
recursive. Recursive
relationships must be non-
identifying

Copyright Melanie Nelson 2007

Specifying Cardinality

Bio_sequence
Bio_seq_id

Bio_mol_id (FK)
Species
Source_database

Sequence_text
Bio_seq_id (FK)
Seq_text

Z

“Z” indicates that there can be
zero or one sequence_text for
each bio_sequence

Used to avoid NULLs: perhaps in some cases we know that a
sequence exists in a given species, but we don’t have the actual
sequence text yet.

Copyright Melanie Nelson 2007

Specifying Cardinality

Lab_employee
Employee_id
Job_type

Bio_mol_id
Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Employee_bio_molecule
Employee_id (FK)
Bio_mol_id (FK)
Research_start_date

1..3

A lab employee must be studying at least
one bio_molecule, but may not be
studying more than three bio_molecules

Is studying

Is studied
by

Copyright Melanie Nelson 2007

Many-to-Many Relationships

Lab_employee
Employee_id
Job_type

Bio_mol_id
Primary_name
Bio_mol_type_code
Function_desc

Bio_molecule

Is studying 3

Can represent the previous relationship as a many-to-many relationship

Copyright Melanie Nelson 2007

Categorization Relationships

Protein_seq
Bio_seq_id (FK)

Bio_seq
Bio_seq_id
Bio_mol_id (FK)
Bio_seq_type
Species
Source_database
Seq_text

Isoelectric_point

Gene_seq
Bio_seq_id (FK)
Promoter_name

Single line under circle
indicates that this is an
incomplete categorization

Bio_seq_type

Identify attribute that
indicates category

Copyright Melanie Nelson 2007

Categorization Relationships

Protein_seq
Bio_seq_id (FK)
Isoelectric_point

Gene_seq
Bio_seq_id (FK)
Promoter_name

Other_nucleotide_seq
Bio_seq_id (FK)
Bio_seq_desc

Bio_seq
Bio_seq_id
Bio_mol_id (FK)
Bio_seq_type
Species
Source_database
Seq_text

Double line under
circle indicates
that this is a
complete
categorization

Bio_seq_type

Copyright Melanie Nelson 2007

Data Modeling Method
Many processes recommend:

List entities
Define relationships
Fill in attributes
Fill in datatypes

I gather all at once
Iteratively develop data model
Focus on “higher level”, i.e., entities and basic relationships
in early iterations
Users don’t discriminate among entities, relationships, and
attributes when describing their needs
If you make users repeat themselves, they will lose
patience with the process

Copyright Melanie Nelson 2007

Data Modeling Method

Define scope
Identify users of data within scope
Develop initial ER diagram

Serves as framework for user interviews
Must be prepared to discard much, if not all, of it

Interview users
Don’t interview too many at once
Don’t interview users with very distinct usages of
data together (at least not initially)

Copyright Melanie Nelson 2007

Data Modeling Method
Build/refine ER diagram

Iterate!
Sleep on it

Data model isn’t complete until you specify
datatypes for each attribute

Datatypes are closest to domain support in most DBMS
Text field lengths and exact names of datatypes are DBMS
dependent
If you know your DBMS, fill them in. Otherwise, put general
type

Document constraints that will be enforced in DB
Business rules that are enforced by triggers
Put in the data dictionary or in an appendix to ER diagram

Copyright Melanie Nelson 2007

Data Modeling Method

Once you have a “full” model, test it with
some sample data

Can be done on paper, or by building DB and
populating
Look for the “pathological” examples

Will almost certainly need to iterate through
the last three steps many times:

Interview users
Refine data model
Test data model

Copyright Melanie Nelson 2007

Rules for Better Design

Use naming conventions
Keep a data dictionary
Don’t be afraid to discard parts (or all) of the
model

Don’t iterate to “patchwork quilt” design
Catch and fix errors in design phase, when they
are relatively cheap and easy to fix

Copyright Melanie Nelson 2007

Naming Conventions
Naming conventions

Make the data model more readable
Simplify database queries
Allow automated maintenance

A real world “thing” should always be
represented by the same name or
abbreviation

Sometimes, may use full word for table names
and abbreviations in columns
Whatever you do, be consistent and document it!

Copyright Melanie Nelson 2007

Naming Conventions

Standardize formatting
Separate words with underscores or hyphens: not
both!

Standardize suffixes
“code” for letter based code
“id” for numerical identifier

Copyright Melanie Nelson 2007

Data Dictionaries

Data dictionaries
Define terms used in a database
Document what the data means

“related_protein”
Protein related by sequence identity, structural similarity,
functional similarity, or any of the above?

Makes it easier for programmers and users to
ensure correct data is entered into database

Copyright Melanie Nelson 2007

Data Dictionaries

Data dictionary should include all entities and
attributes
It is best practice to document relationships
I create data dictionary for logical model, and
modify it as I move to physical design

Use data dictionary to document places where
physical design does not match logical data model

Copyright Melanie Nelson 2007

Normalization

Normalization is a process that ensures
database follows rules that protect data
integrity

Remove redundancy!

As you get more experienced in data
modeling, you’ll find you normalize “by
default”, without thinking about rules
Normalization is “loss-less” and reversible
(via join)

Copyright Melanie Nelson 2007

Why Normalize

Minimize risk of data inconsistencies
Two copies of the same data can get “out of sync”

Minimize update and delete anomalies
If you update or delete one copy, what should happen to
the other copy?

Maximize database design stability
Associate attributes with entities based on the meaning of
the data, not on application requirements

Minimize storage requirements
Storing the same data multiple times wastes disk space
Not as important as it used to be

Copyright Melanie Nelson 2007

First Normal Form
There are no repeating or multivalued attributes
“Repeat down the rows, not across the columns”

Protein ID Protein Name

Protein 1 Calmodulin, CaM

Protein 3 DUSP-2, dual specificity
phosphatase 2, PAC1

Protein ID Protein Name 1 Protein Name 2 Protein Name 3

Protein 1 Calmodulin CaM

Protein 2 DUSP-2 Dual specificity
phosphatase 2

PAC1

Protein ID Protein Name

Protein 1 Calmodulin

Protein 1 CaM

Protein 3 DUSP-2

Protein 3 Dual specificity phosphatase 2

Protein 3 PAC1

Multivalued attributes!

Repeating attributes!

Copyright Melanie Nelson 2007

Second Normal Form
Attributes depend on the entire primary key

Protein
_id

Cell
_id

Protein
_name

Cell_line Expression
_level

456 3 ICE CHO High

456 1 ICE HEK Low

34287 3 Calpain CHO Low

Protein_expression •Protein_name depends on
Protein_id, but not on Cell_id

•Cell_line depends on Cell_id,
but not on Protein_id

•Only Expression_level depends
on both parts of the key

Calpain34287

ICE456

Protein
_name

Protein
_id

HEK1

CHO3

Cell_lineCell_id

Low334287

Low1456

High3456

Expression
_level

Cell
_id

Protein
_id

Protein Protein_expression
Cell_line

Copyright Melanie Nelson 2007

Third Normal Form
Attributes depend only on the primary key
Except: they can depend on candidate keys, too

Protein_
seq_id

Source_db Source_db_url Seq_text

456 Swiss-Prot us.expasy.org/sprot MLVEGF….

32 Swiss-Prot us.expasy.org/sprot MGGKGL….

142 RefSeq www.ncbi.nlm.nih.gov/
RefSeq

MAGKKG….

Source_db_url
depends on
source_db, not
protein_seq_id

MAGKKG….RefSeq142

MGGKGL….Swiss-Prot32

MLVEGF….Swiss-Prot456

Seq_textSource_dbProtein_
seq_id

www.ncbi.nlm.nih.gov/
RefSeq

RefSeq

us.expasy.org/sprotSwiss-Prot

Source_db_urlSource_db

Copyright Melanie Nelson 2007

Boyce-Codd Normal Form
All attributes depend on each full candidate key, and not on a
subset of any candidate key
Particularly important to consider if using automatic numeric IDs

Seq_
id

Protein
_id

Source_
db

Source_db_url Seq_text

1

2

3

456 Swiss-
Prot

us.expasy.org/sprot MLVEGF….

32 Swiss-
Prot

us.expasy.org/sprot MGGKGL….

456 RefSeq www.ncbi.nlm.nih.gov/
RefSeq

LVEGF….

•Protein_id and
Source_db together
identify each row

•Source_db_url still
depends on
Source_db, but not
on Protein_id

www.ncbi.nlm.nih.gov/
RefSeq

RefSeq

us.expasy.org/sprotSwiss-Prot

Source_db_urlSource_db

LVEGF….RefSeq4563

MGGKGL….Swiss-Prot322

MLVEGF….Swiss-Prot4561

Seq_textSource_dbProtein_
id

Seq_
id

Copyright Melanie Nelson 2007

Fourth Normal Form
A composite primary key should not contain
independently multivalued components

Protein_name Protein_function Gene

Calmodulin Binds calcium CALM1

Calmodulin Activates CaMKII CALM1

Calmodulin Binds calcium CALM2

Calmodulin Activates CaMKII CALM2

Protein_name and
Protein_function vary
independently of Protein_name
and Gene

Activates CaMKIICalmodulin

Binds calciumCalmodulin

Protein_functionProtein_name

CALM2Calmodulin

CALM1Calmodulin

GeneProtein_name

Copyright Melanie Nelson 2007

Fifth Normal Form

Remove pairwise cyclic dependencies from
composite primary keys with three or more
components

Copyright Melanie Nelson 2007

Normalization Rules

Normalize to at least Boyce-Codd Normal
Form

3NF is acceptable if you aren’t using system-
generated primary keys

Goal is remove redundancy
Redundancy can lead to inconsistency

Always keep business rules in mind while
normalizing

Make sure you understand dependencies among
attributes before moving to 2NF and beyond

Copyright Melanie Nelson 2007

Homework
Homework: Handout + Develop ER diagram for project described on next
slide

Grading focuses on normalization and diagram syntax
We’ll discuss the design at the start of the next class
This week’s homework will be worth 20 points (10 points for the handout
and 10 points for the ER diagram)
Email me questions if you have them

Reading for next week’s class
GenBank portion of the NCBI handbook, UniProt user manual (on
website)

Review for the midterm!
Time for questions at the beginning of next class

REMINDER: Next class will be Feb. 1!

Copyright Melanie Nelson 2007

Homework
Scientists want a database that stores information
about proteins
Each protein can have multiple names. All proteins
have at least one name.
Each protein can have multiple sequences, each
one comes from an external database, and has an
identifier assigned by that database. Not all proteins
will have a sequence associated with them.

You can assume that sequences from different databases
are different.

Each protein can have multiple functions associated
with it, but not all proteins will have an associated
function.

	Biological Database DesignWeek 2
	Final Project: Reminder!
	Database Design Process
	Attributes of a Good Process
	Parts of a Standard Process
	“Waterfall” Process
	Variations
	Step 1: Plan
	Attributes of Good Requirements
	Requirements
	Step 2: Design
	Logical Data Model vs. Physical Database Design
	Design Tools
	Step 3: Develop
	Step 4: Test
	Step 5: Deploy
	Data Modeling
	Tools for Data Modeling
	Entity-Relationship Diagrams
	Entity-Relationship Diagrams
	Entities and Attributes
	Entity-Relationship Diagrams
	Basic Relationships
	Basic Relationships
	Recursive and Optional Relationships
	Specifying Cardinality
	Specifying Cardinality
	Many-to-Many Relationships
	Categorization Relationships
	Categorization Relationships
	Data Modeling Method
	Data Modeling Method
	Data Modeling Method
	Data Modeling Method
	Rules for Better Design
	Naming Conventions
	Naming Conventions
	Data Dictionaries
	Data Dictionaries
	Normalization
	Why Normalize
	First Normal Form
	Second Normal Form
	Third Normal Form
	Boyce-Codd Normal Form
	Fourth Normal Form
	Fifth Normal Form
	Normalization Rules
	Homework
	Homework

