Biological Database Design
Week 1

Winter 2007
Melanie Nelson, Ph.D.

Introductions

About me

o Ph.D. in biochemistry (1999)
o Bioinformatics/IT in Biotech
Physiome Sciences (now Predix Pharmaceuticals)

GeneFormatics (now Cengent Therapeutics)
SAIC

o EXxperience with
Databases
XML
Perl
Protein Structure/Function Analysis

o E-mail: m-nelson-1@alumni.uchicago.edu (1 day turnaround)
Class introductions

Copyright Melanie Nelson 2007

mailto:m-nelson-1@alumni.uchicago.edu

Course Overview
Goals

o Intro to DBs
o Overview of common types of biological data
o Introduction to biology-specific problems/issues

Grading

o 2% participation

o 10% homework

o 38% midterm

o 50% final project

Schedule: Thursdays, 7-10 p.m. In practice, most
classes will finish by 9 or 9:30.

o No class Jan. 25

o Will work through examples, answer questions, etc. either
from 6 or 6:30 (if room is available) or from ~9-10.

Copyright Melanie Nelson 2007

Course Overview

No Required Book. Some Suggestions:

o Handbook for Relational Database Design (Fleming and
von Halle): old, but covers basics well

o An Introduction to Database Systems (Date): the classic:
frequently updated but overkill for this course

o Database in Depth (Date): concise summary of database
theory, geared at people who already work with databases

| strongly recommend students without a database
background choose a book and read it!

Readings are supplemented by articles supplied on
website.

o | strongly recommend students without a bio background
plan on reading recommended bio resources!

Online resources

o My website:
www.32geeks.com/classes/biodb_design_ 2007

Copyright Melanie Nelson 2007

Course Overview

Week 1

o Introduction to databases

o Fundamentals of the relational model (includes a brief intro
to SQL)

Week 2

o Database design process
o ER diagrams
o Normalization

Week 3

o Bio data 1: Gene and protein sequences and metadata
o Midterm

Copyright Melanie Nelson 2007

Course Overview

Week 4
o Bio data 2: gene expression

o Bio data 3: LIMS

o Project plans due

Week 5

o Biology-specific issues in database design
Week 6

o Biology-specific issues in database design and/or special
topics (time permitting)

o Final project presentations

Copyright Melanie Nelson 2007

Final Project

Design a database to store biological data. The
database must integrate at least two sources of
data.

Can work alone or in teams of up to three members

Week 4: Hand in plan

o What type of biological data will be stored

o Scope statement (what aspects of the data are to be
covered by your database)

Week 6: Hand in and present design

o Requirements document

o ER or UML diagram

o Short (1-2 page) report describing any difficult or unusual
design decisions

o Make 10-15 minute presentation about DB to class

Copyright Melanie Nelson 2007

Introduction to Databases

Information in a database is

o Structured (searchable)
o Capable of being shared with multiple applications
(multiple uses)

Databases are supported by a database
management system

o Layer between applications using the data and the
raw data

o Handles requests for data
o Manages concurrency

o Protects data integrity } consistency

Copyright Melanie Nelson 2007

Data Management without Databases

App #1

Z

App #1
Files

User manually
transfers data

& B

User discovers and
resolves conflicts at
unpredictable times

N

App #2

|

App #2
Files

App #3

\

Copyright Melanie Nelson 2007

App #3
Files

Data Management with Databases

App #1

N

No need to
“transfer”
data among

apps

User discovers and resolves

conflicts as they occur

App #2

l

| Database

\

DBMS

¥ v

\

N

JL

App #3

JL

\

//

Copyright Melanie Nelson 2007

Some Advantages of Databases

Improve interoperabllity: app #1 has

“sequence”, app #2 has “prot_seq’. Are they
the same thing?

Reduce inconsistency: app #1 says protein A

binds drug Z, app #2 says it doesn’t. Which Is
right?

Improve efficiency: scientists/programmers
don’t have to gather data for each
application/question

Copyright Melanie Nelson 2007

Types of Database Systems

Four main types of databases:
o Hierarchical

o Network

o Relational

0 Object-Oriented

Copyright Melanie Nelson 2007

Hierarchical Databases

Information organized

Into tree, or parent-child
relationships

Data gets duplicated
when one child has

more than one parent /

Data gets

when a

child doesn’t have a

parent

Cell
Type 2
CHO /
Cells integrin 1V
/ / p53
calmodulin Medium
: : expression
Integrin IV
High | DUSP-2 High
expression expression
Low | High
expression expression

Copyright Melanie Nelson 2007

Hierarchical Databases

Historically, the first type of database

o IBM’s Information Management System (IMS)
o Introduced in 1968

XML can be viewed as a hierarchical
database

o Information Is organized into tree

o Collections of XML files can be used as a
database

Copyright Melanie Nelson 2007

Network Databases

Extends hierarchical
model to allow children
to have multiple parents

Model has:

o Records
o Links between records

Careful design can

avoid data duplication

Complicated design
and data access

CHO HEK
cells cells
1\

CHO HEK

cell CHO cell

High cell Medium

EXp. Low EXp.

/ | Exp.

calmodulin DUSP-2
integrin 1V

Copyright Melanie Nelson 2007

ICE

HEK
cell

High
EXp.

p53

Network Databases

Emerged in the 70s

Conference on Data Systems Languages
(CODASYL) produced guidelines for
databases

XML with XLink can be viewed as a network
database

o XLink allows links across branches in the XML
tree

Copyright Melanie Nelson 2007

Relational Databases

Information is modeled
as tables (relations)
with links between
tables

Rigorous mathematical
basis

o Allows prevention of data
duplication and other
data integrity problems

o Simplifies data access

Copyright Melanie Nelson 28a<

Cell Line
Cell line 1 CHO cells
Cell line 2 HEK cells
Protein Expression
Cell line 1 Protein 1 High
Cell line 1 Protein 2 Low
Cell line 1 Protein 3 High
Cell line 2 Protein 2 Medium
Cell line 2 Protein 4 High
Protein
Protein 1 calmodulin
Protein 2 integrin 1V
Protein 3 DUSP-2
Protein 4 ICE
Protein 5 p53

Relational Databases

Developed in 70s by Dr. E.F. Codd at IBM

Is the dominant model in use today
o Oracle

o IBM DB2

o MS SQL Server

0 PostgreSQL

o MySQL

Copyright Melanie Nelson 2007

Object-Oriented Databases

OODBs store data in
classes, with
associations between
classes

Integrates data storage
with data manipulation:
methods are part of
object

Must be careful to avoid
data duplication and

CellLine

Type: CHO cells

Protein \
Name:Calmodulin

Expression: High

Protein

Name: Integrin IV
Expression: Low

Protein

Name: DUSP-2
Expression: High

CellLine

Type: HEK cells

Protein
\ Name: p53

Expression: High

Protein

Name: Integrin IV

Expression: Medium

Copyright Melanie Nelson 2007

Object-Oriented Databases

Introduced in 80s, In conjunction with rise in object-
oriented programming techniques

o There are difficulties integrating OO programming and
relational DBs

o OODBs often have the same problems network DBs had
Lack easy data access of relational DBs

Major relational DBs have introduced “object
extensions”

Ongoing debate about how best to integrate DBs
and OO programming

o Many solutions now available to assist with this integration

Copyright Melanie Nelson 2007

Relational vs the Other Models

Relational model attempts to correctly
represent data, without regard to how it will
be used

In other models, how the data will be used
can greatly influence the design
o If you design to a particular application, you will

probably make it easy to answer the questions In
that application...

o But you may make it harder, or even impossible,
to answer other types of questions!

Copyright Melanie Nelson 2007

Relational vs. Other Models

Relational DBs were intended to free users
from needing a programmer to write new
code to answer each new guestion

This is particularly useful in science:
scientists will think of a new question!

SQL still too “programming-like” for many
users

o Flexible reporting apps attempt to address this

Copyright Melanie Nelson 2007

The Relational Model

Direct quote from Date:
o Data Is perceived by users as tables (and nothing
but tables)

2o The operators at the user’s disposal...are
operators that generate new tables from old, and
those operators include at least
SELECT...,PROJECT, and JOIN

Copyright Melanie Nelson 2007

The Relational Model

The relational model speaks to:
o Data structure

o Data manipulation

o Data integrity

It does not speak to data storage

Relational model refers to database
design, not database design

Copyright Melanie Nelson 2007

The Relational Model

Mathematically rigorous

When correctly implemented, can guarantee
accuracy of query results (assuming input

was valid!)

No current DBMS fully implements the
relational model

Copyright Melanie Nelson 2007

Relational Terms

Consiot :fTabIe = Column ~ Row
onsists o -
heading (a fixed set Also called a field Also (C:Ia”ed a
of attributes) \ Proteins l f(;ce): c;f
*body (a set of tuples) .
attribute:value

Protein 1 calmodulin pairs

Protein 2 integrin 1V /

Protein 3 DUSP-2

Protein 4 ICE

Protein 5 p53

I = Valid set of values
= Unique identifier “A named set of scalar values”

Attribute or combination of attributes Each attribute has a domain
that uniquely identifies each tuple upon which it is defined

Copyright Melanie Nelson 2007

Properties of Relational Tables

The following properties are a consequence
of the definition of relations, attributes, and
domains:

o Each column has a unique name

o All entries in a given column are of the same kind

Copyright Melanie Nelson 2007

Properties of Relational Tables

There are no duplicate tuples
o “Each row Is unique”

o The body of a relation is a mathematical set: sets
do not have duplicate elements

o Primary key ensures this rule is upheld

o Do not circumvent!

Common to use system-assigned numerical value as
primary key

Should have an “alternate key” that is inherent in the
data

Copyright Melanie Nelson 2007

Properties of Relational Tables

The sequence of tuples is unimportant
0 Sets are unordered

o DBA may change way in which rows are
partitioned Iin storage to improve performance of
certain queries

2 Never write code that assumes a query will return
results in a given order

o If tuple order is meaningful, it should be specified
by an attribute

Copyright Melanie Nelson 2007

Properties of Relational Tables

The sequence of attributes is unimportant
o The heading of a relation is also a set

o DBA may change physical order of columns to
Improve performance of certain queries

o Never assume the columns will be returned in a
given order: specify the order in the query

Copyright Melanie Nelson 2007

Properties of Relational Tables

Attribute values are atomic
o “Entries in columns are single-valued”
o First normal form

Protein 1 dulin, CaM Protein 1 Calmodulin
Protein 3 ual specificity Protein 1 CaM
PAC1 Protein 3 DUSP-2
Protein 3 Dual specificity phosphatase 2
Protein 3 PAC1

Protein 1

Calmodulin

Protein 2

DUSP-2

PAC1

Copyright Melanie Nelson 2007

Types ot Relations

= an autonomous relation (i.e., not
defined in terms of another relation)

o What we typically mean when we talk about database
tables

= a relation defined in terms of
other relations
o Query results, for instance

= a named derived relation
o SQL to generate derived relation is stored in database

= a view in which data is actually
copied
o “snapshot”
o Used to improve performance
o Can lead to integrity issues

Copyright Melanie Nelson 2007

Data Integrity

Data in the database is meant to represent
“reality”

Certain combinations of values are not
possible in the real world, so the database
should exclude them

Rules apply to base relations

Three types:

o Entity Integrity

o Referential Integrity

0 “Domain Integrity” (other rules)

Copyright Melanie Nelson 2007

Candidate Keys

Candidate keys
o A candidate key can uniquely identify each row

o A candidate key cannot be reduced: I.e., there Is
no subset of the attributes in the key that also
uniquely identify each row

Primary key Is the candidate key chosen to
be used

Alternate keys = candidate keys not chosen
to be primary key

Copyright Melanie Nelson 2007

Entity Integrity

No part of the primary key may be NULL

NULL = absence of value
o Value doesn’t exist
o Value isn’t known

The primary key uniquely identifies a row

o If partis NULL, it means that we do not know the
value

o It could be a value that is already represented in
the table

o Therefore, we can’t uniguely identify the row

Copyright Melanie Nelson 2007

Reterential Integrity: Foreign Keys

Links between two related tables are made
via foreign keys

Foreign key = the primary key of a related

Available Protein

Species

1 Homo human Y
sapiens

4 Mus house mouse | Y
musculus

56

Protein 1 calmodulin 1
Protein 2 integrin 1V 56
Protein 3 DUSP-2 4

Primary key
of parent table

Copyright Melanie Nelson 2007

Bos taurus cow N -
Foreign key of
child table

Reterential Integrity

A foreign key value must either
o Match a primary key value in the referenced table

o Be NULL
Species
1 Homo human
sapiens
4 Mus house mouse
musculus
56 Bos taurus cCow

Available_Protein

Protein 1 calmodulin 1
Protein 2 integrin 1V 56
Protein 3 DUSP-2 4

Copyright Melanie Nelson 2007

Reterential Integrity

Prevents “orphan” rows in child table

o Child data usually loses significant meaning
without parent information

In practice, allowing a foreign key to be NULL
can create problems

In practice, NULLs can create problems!

2 What does it mean? Value doesn’t exist or value
unknown?

o Consider using defaults instead

Copyright Melanie Nelson 2007

Domain Integrity

Attribute integrity

o Values of an attribute are taken from the specified
domain

o Domain support in database management
systems is weak

Business rules
o All the other rules the data must follow

o Implemented in triggers, stored procedures,
application logic

Copyright Melanie Nelson 2007

Data Definition and Manipulation

Any functioning DBMS must provide a
language for data definition and manipulation

o Data definition = a way to create relations and
store data in them

o Data manipulation = a way to get data back out

Codd's papers provided a relational algebra
and a relational calculus

SQL is the standard language by which this is
Implemented

Copyright Melanie Nelson 2007

Properties of Data Manipulation

Closure: relational operators operate on
relations and produce relations

o Allows nested expressions

Relational operators are not affected by
changes to physical storage of data

Copyright Melanie Nelson 2007

Introduction to SQL

SQL = Structured Query Language

o Except that the spec says SQL doesn’t stand for anything
Standard language for storing and accessing data in
relational databases

A nonprocedural language

o Say what you want, not how to get it

o A RDBMS has a query optimizer that figures out how to get
the data

RDBMS purists point out that it is not fully compliant
with relational database theory

o Poor support of domains

o Allows tables without keys

Copyright Melanie Nelson 2007

Introduction to SQL

Data Definition Language (DDL)
o CREATE TABLE, DROP TABLE

o CREATE INDEX

o Constraints: UNIQUE, PRIMARY KEY, FOREIGN
KEY, NOT NULL

Data Manipulation Language (DML)
o INSERT, UPDATE, DELETE

a0 SELECT

2 UNION, INTERSECT, EXCEPT

Copyright Melanie Nelson 2007

Example Tables

Bio molecule sequence

Bio_molecule

a(Bm_moLMINTEGER(FK))

Source_database VARCHAR2 (32)
Date_inserted DATETIME
Seq_text CLOB

)

Bio_mol_id INTEGER

Species VARCHARZ2 (100)
Bio_mol _type code CHAR (1)

Function_desc VARCHAR2 (2000) (O)

(FK)

Bio molecule type

Bio_molecule _name

Bio_mol _type code CHAR (1)

Bio_mol_type VARCHAR?Z2 (32)

Bio_mol _desc VARCHAR?2 (500)

Bio_mol_id INTEGER (FK)
Bio_mol name VARCHAR2 (500)

kPrimary_name CHAR (1)

Copyright Melanie Nelson 2007

CREATE TABLE

Use to create a table

tablel
(columnl datatype ,
column2 datatype)

Each table should have a primary key
constraint on one or more columns

Use to enforce alternate keys

Copyright Melanie Nelson 2007

CREATE TABLE

Create a table to store biological molecules

CREATE TABLE Bio_molecule (
Bio_mol_id INTEGER PRIMARY KEY,
Species VARCHAR2 (50) NOT NULL,
Bio_mol_type code CHAR (1) NOT NULL,
Function_desc VARCHAR2 (2000)

PRIMARY KEY is equivalent to UNIQUE, NOT NULL

Copyright Melanie Nelson 2007

Other DDL Commands

ALTER TABLE

o Add/c
o Not a

rop/modify a column of a table
| DBMS support drop and modify

CREATE INDEX

o Create an index on a column or combination of
columns

o Implementation detall: indexes are used by DBMS
to enforce constraints and optimize lookup

o UNIQUE constraints automatically create index

DROP

TABLE, DROP INDEX

Copyright Melanie Nelson 2007

INSERT

Use INSERT to get data into a table
tablel (column list)
(value list)

Column list Is optional, but should specify it if
the statement is included in application code

0 Remember, the columns in a table are not in any
particular order!

Copyright Melanie Nelson 2007

INSERT

Insert the name “PTP1B” for biological
molecule #1456. It Is a primary name.

INSERT INTO Bio_molecule name
(Bio_mol _id, Bio_mol _name, Primary_nhame)
VALUES (1456, ‘PTP1B’, 'Y’)

Text Is surrounded by single quotes.

Copyright Melanie Nelson 2007

UPDATE

Use to alter data in a table
tablel
columnl = new value,
column2 = new value
column3 = condition

WHERE clause is optional. Without it, the
UPDATE will apply to all rows in the table

Copyright Melanie Nelson 2007

UPDATE

Change calmodulin to be the primary name.

UPDATE Bio molecule name

SET Primary _name ="'Y’

WHERE Bio_mol name = ‘calmodulin’
AND Bio mol id=1

Bio_mol_id portion of where clause is probably
unnecessary.

Copyright Melanie Nelson 2007

DELETE

Removes row(s) from table
tablel
columnl = condition

WHERE clause is optional. Without it,
DELETE will remove all rows from the table.
o Won't remove table

o To do this, use DROP TABLE

Copyright Melanie Nelson 2007

DELETE

Delete all Incyte sequence data

DELETE FROM Bio_molecule_sequence
WHERE Source database = ‘INCYTFE’

Copyright Melanie Nelson 2007

Relational Operators: Select

Also called restrict

Retrieve a subset of rows (tuples) from a relation
Subset is determined by a selection criteria
SELECT *

FROM Bio_molecule _name

WHERE Bio_mol id=1

Bio_molecule_name List all the names of Biomolecule 1

Calmodulin

CaM

|:> 1 Calmodulin Y

DUSP-2

Wl Wl | P
<|lz|lz|=<

Dual specificity 1 CaM N

phosphatase 2

3 PAC1 N

Copyright Melanie Nelson 2007

Relational Operators: Project

Retrieve a subset of columns (attributes) from a relation
SELECT Bio_mol_id, Bio_mol _name
FROM Bio_molecule _name

WHERE Primary _name=‘Y’
Get a list of primary

Bio_molecule_name names of molecules

1 Calmodulin Y

1 CaM N :::

3 DUSP-2 N 1 Calmodulin

3 Dual specificity Y 3 Dual specificity
phosphatase 2 phosphatase 2

3 PAC1 N

Copyright Melanie Nelson 2007

SELECT

Use to get information out of tables
columnl, column2
tablel
column3 = condition

WHERE clause is optional. Without it, the
statement returns all rows in the table

Copyright Melanie Nelson 2007

SELECT

List the primary name and bio_mol _id for all
molecules:

o SELECT Bio_mol _id, Bio_mol name
FROM Bio_molecule_name
WHERE Primary_name = 'Y’

List all biological molecules stored in the
database:

a0 SELECT *
FROM Bio molecule

Copyright Melanie Nelson 2007

SELECT DISTINCT

Use to get a list of distinct values
(columnl, column2)
tablel

Can have one or more columns In the select
statement

Multiple columns will provide distinct
combinations of values of those columns

Copyright Melanie Nelson 2007

SELECT DISTINCT

Find out what types of biological molecules are
represented in the Bio_molecule table:

SELECT DISTINCT Bio_mol _type code
FROM Bio_molecule

Copyright Melanie Nelson 2007

Relational Operators: Product

A cartesian product of two relations

Each row In relation 1 1s combined with each
row In relation 2

SELECT *
FROM Bio _molecule, Bio_molecule_type

Copyright Melanie Nelson 2007

Relational Operators: Product

Bio_molecule

1 Homo Calcium
sapiens sensor
3 Mus Phospha- Homo Calcium Protein | Expressed
musculus tase sapiens sensor protein
Homo Calcium MRNA | Messen-
sapiens sensor ger RNA
Bio_molecule_type Mus Phospha- Protein | Expressed
musculus tase protein
Mus Phospha- MRNA | Messen-
P Protein Expressed musculus tase ger RNA
protein
M MRNA Messenger
RNA

Copyright Melanie Nelson 2007

Relational Operators

Join
2 Combination of product and select

2 Combines row from relation 1 with row from
relation 2 only when selection criteria are met

o Criteria specify when rows are to be combined
o SELECT *
FROM Bio_molecule, Bio_molecule type

WHERE Bio _molecule.Bio_mol type code =
Bio_molecule type.Bio_mol type code

Copyright Melanie Nelson 2007

Relational Operators: Join

Bio_molecule

1 Homo Calcium
sapiens sensor

3 Mus Phospha-
musculus tase

Bio_molecule_type

Include biomolecule type in molecule information

1 Homo P Calcium Protein | Expressed
sapiens sensor protein
::> 3 Mus M Phospha- mMRNA | Messen-
musculus tase ger RNA

P Protein Expressed
protein

M MRNA Messenger
RNA

More meaningful than a product!
More likely to combine with a project and
exclude the bio_mol_type code.

Copyright Melanie Nelson 2007

Relational Operators: Join

Types of join
o Equi-join
Join criterion is equality of attribute(s) in two tables

o Natural join

Equi-join in which redundant columns are removed from
the result set

o Outer join

Returned relation includes rows that are missing from
one of the original tables

Copyright Melanie Nelson 2007

JOIN

Joins are used to combine information from multiple
tables

Two types of syntax

tablel.columnl, table2.column2
tablel, table2
tablel.column3 = table2.column3

tablel.columnl, table2.column2
tablel
table 2 (tablel.column3 = table2.column3)

Copyright Melanie Nelson 2007

JOIN

Show the biomolecule type, rather than the code,
for all types represented in Bio_molecule:

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm,
Bio_molecule type bmt
WHERE bm.Bio_mol type code = bmt.Bio_mol type code

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm
JOIN Bio_molecule_type bmt
ON bm.Bio_mole type code = bmt.Bio_mol type code

Copyright Melanie Nelson 2007

LIKE and Wildcards

Wildcards are ‘%’ and * '’
0 ‘%’ = any number of characters

o '’ = exactly one character
Used with keyword LIKE

Select information on all biomolecules with

the word “kinase” in one of their names
o SELECT bm.Bio_mol_id, Bio_mol _name, Species
FROM Bio_molecule bm,
Bio_molecule_name bmn
WHERE bm.Bio_mol_id = bmn.Bio_mol _id
AND Bio_mol _name LIKE ‘%kinase%’

Contents of strings are case-sensitive

Copyright Melanie Nelson 2007

ORDER BY

ORDER BY returns rows in order
List the names assigned to Biomolecule #478
In alphabetical order:
o0 SELECT Bio_mol name
FROM Bio_molecule _name
WHERE Bio_mol_id =478
ORDER BY Bio_mol name ASC
ASC or DESC

Copyright Melanie Nelson 2007

Agoregate Functions

COUNT

o Count number of sequences from RefSeq DB
a0 SELECT COUNT (*)

FROM Bio_molecule seguence

WHERE Source database = ‘RefSe(q’

GROUP BY

o Count number of sequences from each DB
0 SELECT Source_database, COUNT (*)
FROM Bio_molecule seqguence
GROUP BY Source_ database

Copyright Melanie Nelson 2007

Aggregate Functions

MAX and MIN
0 SELECT MAX(Date_inserted)
FROM Bio_molecule seguence
a2 Can be used on numeric and date fields

SUM
AVG

Copyright Melanie Nelson 2007

String Functions

DBMS specific implementations

Usually have at least:

o Substrings
o Length

Copyright Melanie Nelson 2007

Subqueries

Can nest SQL statements:
o Select all names for human proteins:
SELECT Bio_mol _name
FROM Bio_molecule _name
WHERE Bio_mol _id IN (
SELECT Bio_mol id
FROM Bio_molecule
WHERE Species = ‘Homo sapiens
AND Bio _mol type code = ‘P’
)

Copyright Melanie Nelson 2007

Subqueries

EXISTS
o Another way to express subsets
SELECT Bio_mol _name
FROM Bio_molecule _name bmn
WHERE EXISTS (
SELECT *
FROM Bio_molecule bm
WHERE Species = ‘Homo sapiens’
AND Bio_mol _type code = ‘P’
AND bm.Bio_mol id = bmn.Bio_mol id

Copyright Melanie Nelson 2007

Subqueries

Can also use NOT IN and NOT EXISTS

Choice between using JOIN, IN, or EXISTS Is
a performance tuning issue

Optimizer will usually “convert” for you, but
sometimes it pays to optimize, or “tune” the
guery yourself

For more detalls:

0 SQL Performance Tuning, by P. Gulutzan and T.
Pelzer

Copyright Melanie Nelson 2007

Subqueries

Can join back to the same table

Show the primary name for all biomolecules for
which there are no other names:

SELECT Bio_mol name
FROM Bio_molecule_name bmnl
WHERE Primary =Y’
AND NOT EXISTS (
SELECT *
FROM Bio _molecule _name bmn2
WHERE Primary <> 'Y’
AND bmn2.Bio_mol _id = bmnl.Bio_mol id

Copyright Melanie Nelson 2007

CLOBs

= Character L_arge Object
Implementation is very DBMS specific

Usually do not have access to many
functions

o No substring or length functions

o Can't use in WHERE clause

o Can even be difficult to load in and select out

Copyright Melanie Nelson 2007

Relational Operators: Union

Merges two relations

Result Is a set that contains all rows In relation 1 and
all rows In relation 2

Useful for combining subsets

SELECT *

FROM Protein_Sequence
UNION

SELECT *

FROM Nucleotide Sequence

Copyright Melanie Nelson 2007

Relational Operators: Union

Protein_Sequence

Get a list of all sequences

Protein 1 ALVCYFMIEGD....

Protein 2 KLMIKAGGKLYV....

Protein 1 ALVCYFMIEGD....

:> Protein2 | KLMIKAGGKLV....

DNA 1 ATTGCATTAGC....

Nucleotide Sequence

DNA 2 GCGGTATGCC....

DNA 1 ATTGCATTAGC....

DNA 2 GCGGTATGCC....

More likely to be used in
combination with projection

Copyright Melanie Nelson 2007

Relational Operators: Union

Protein_Sequence Get a list of all sequences
Protein | ALVCYFMIEGD.... | 4.5
! Protein1 | ALVCYFMIEGD....
Protein | KLMIKAGGKLV.... | 7.3
2 Protein 2 | KLMIKAGGKLV....
::> DNA 1 ATTGCATTAGC....
Nucleotide Sequence
DNA 2 GCGGTATGCC....
DNA 1 | ATTGCATTAGC.... | TATA :
SELECT Biopol_ID, Sequence
DNA 2 | GCGGTATGCC.... | TAAA FROM Protein_Sequence
UNION

SELECT Biopol_ID, Sequence
FROM Nucleotide Sequence

Copyright Melanie Nelson 2007

Relational Operators: Intersection

Returns rows common to both relations
Used to identify overlapping subsets

SELECT *

FROM Protein_Stock
INTERSECT
SELECT *

FROM Plasmid Stock

Copyright Melanie Nelson 2007

Relational Operators: Intersection

Protein_Stock

Protein 1

Box 2

Protein 2

Box 5

Plasmid_Stock

Find proteins for which
lab has both plasmid and
protein prep in stock

Protein 1 Box 2

Protein 1

Box 2

Protein 3

Box 3

—)

Again, more likely to be
used in combination with
projection

Copyright Melanie Nelson 2007

Relational Operators: Ditterence

Subtraction: returns rows found in relation 1
but not In relation 2

Used to identify non-overlapping subsets

SELECT *

FROM Protein_Stock
EXCEPT

SELECT *

FROM Plasmid_Stock

Copyright Melanie Nelson 2007

Relational Operators: Ditterence

Protein_Stock

Protein 1

Box 2

Protein 2

Box 5

Plasmid_Stock

Find proteins for which
lab has plasmid but no
protein prep in stock
(time to make more!)

l[: Protein 3 Box 3

Protein 1

Box 2

Protein 3

Box 3

Again, more likely to be
used in combination with
projection

Copyright Melanie Nelson 2007

Relational Operators: Division

Returns column values from one relation for
which there are matching column values for
every row in another relation

A fancy sort of intersection:

o Finds the subset of relation 1 that “meets criteria”
established by relation 2

No simple SQL implementation. See:

http://www.developersdex.com/gurus/articles/
113.asp

Copyright Melanie Nelson 2007

Relational Operators: Division

Available_Protein

Find proteins that are
Protein 1 | calmodulin | Homo human avall_able In a” i
sapiens species studied in the
Protein 2 | integrin IV | Bos taurus | cow lab
Protein 1 | calmodulin | Mus house
musculus mouse
Protein3 | ICE Homo human
sapiens
—> Protein 1 | calmodulin
Lab_Species
Homo sapiens human
Mus musculus house mouse

Copyright Melanie Nelson 2007

Reading and Homework

Recommended reading for this week’s class:
Chapters 1-3 of Fleming and von Halle

Homework handout

Fleming and von Halle:
o Recommended reading for next week’s class: Chapter 4
o Optional reading: Chapters 5-7

The Trip-Packing Dilemma article (on website)

Optional: Writing Quality Requirements article (on
website)

Copyright Melanie Nelson 2007

	Biological Database DesignWeek 1
	Introductions
	Course Overview
	Course Overview
	Course Overview
	Course Overview
	Final Project
	Introduction to Databases
	Data Management without Databases
	Data Management with Databases
	Some Advantages of Databases
	Types of Database Systems
	Hierarchical Databases
	Hierarchical Databases
	Network Databases
	Network Databases
	Relational Databases
	Relational Databases
	Object-Oriented Databases
	Object-Oriented Databases
	Relational vs the Other Models
	Relational vs. Other Models
	The Relational Model
	The Relational Model
	The Relational Model
	Relational Terms
	Properties of Relational Tables
	Properties of Relational Tables
	Properties of Relational Tables
	Properties of Relational Tables
	Properties of Relational Tables
	Types of Relations
	Data Integrity
	Candidate Keys
	Entity Integrity
	Referential Integrity: Foreign Keys
	Referential Integrity
	Referential Integrity
	Domain Integrity
	Data Definition and Manipulation
	Properties of Data Manipulation
	Introduction to SQL
	Introduction to SQL
	Example Tables
	CREATE TABLE
	CREATE TABLE
	Other DDL Commands
	INSERT
	INSERT
	UPDATE
	UPDATE
	DELETE
	DELETE
	Relational Operators: Select
	Relational Operators: Project
	SELECT
	SELECT
	SELECT DISTINCT
	SELECT DISTINCT
	Relational Operators: Product
	Relational Operators: Product
	Relational Operators
	Relational Operators: Join
	Relational Operators: Join
	JOIN
	JOIN
	LIKE and Wildcards
	ORDER BY
	Aggregate Functions
	Aggregate Functions
	String Functions
	Subqueries
	Subqueries
	Subqueries
	Subqueries
	CLOBs
	Relational Operators: Union
	Relational Operators: Union
	Relational Operators: Union
	Relational Operators: Intersection
	Relational Operators: Intersection
	Relational Operators: Difference
	Relational Operators: Difference
	Relational Operators: Division
	Relational Operators: Division
	Reading and Homework

