
Copyright Melanie Nelson 2007

Biological Database Design
Week 1

Winter 2007
Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2007

Introductions
About me

Ph.D. in biochemistry (1999)
Bioinformatics/IT in Biotech

Physiome Sciences (now Predix Pharmaceuticals)
GeneFormatics (now Cengent Therapeutics)
SAIC

Experience with
Databases
XML
Perl
Protein Structure/Function Analysis

E-mail: m-nelson-1@alumni.uchicago.edu (1 day turnaround)
Class introductions

mailto:m-nelson-1@alumni.uchicago.edu

Copyright Melanie Nelson 2007

Course Overview
Goals

Intro to DBs
Overview of common types of biological data
Introduction to biology-specific problems/issues

Grading
2% participation
10% homework
38% midterm
50% final project

Schedule: Thursdays, 7-10 p.m. In practice, most
classes will finish by 9 or 9:30.

No class Jan. 25
Will work through examples, answer questions, etc. either
from 6 or 6:30 (if room is available) or from ~9-10.

Copyright Melanie Nelson 2007

Course Overview
No Required Book. Some Suggestions:

Handbook for Relational Database Design (Fleming and
von Halle): old, but covers basics well
An Introduction to Database Systems (Date): the classic:
frequently updated but overkill for this course
Database in Depth (Date): concise summary of database
theory, geared at people who already work with databases

I strongly recommend students without a database
background choose a book and read it!
Readings are supplemented by articles supplied on
website.

I strongly recommend students without a bio background
plan on reading recommended bio resources!

Online resources
My website:
www.32geeks.com/classes/biodb_design_2007

Copyright Melanie Nelson 2007

Course Overview
Week 1

Introduction to databases
Fundamentals of the relational model (includes a brief intro
to SQL)

Week 2
Database design process
ER diagrams
Normalization

Week 3
Bio data 1: Gene and protein sequences and metadata
Midterm

Copyright Melanie Nelson 2007

Course Overview
Week 4

Bio data 2: gene expression
Bio data 3: LIMS
Project plans due

Week 5
Biology-specific issues in database design

Week 6
Biology-specific issues in database design and/or special
topics (time permitting)
Final project presentations

Copyright Melanie Nelson 2007

Final Project
Design a database to store biological data. The
database must integrate at least two sources of
data.
Can work alone or in teams of up to three members
Week 4: Hand in plan

What type of biological data will be stored
Scope statement (what aspects of the data are to be
covered by your database)

Week 6: Hand in and present design
Requirements document
ER or UML diagram
Short (1-2 page) report describing any difficult or unusual
design decisions
Make 10-15 minute presentation about DB to class

Copyright Melanie Nelson 2007

Introduction to Databases
Information in a database is

Structured (searchable)
Capable of being shared with multiple applications
(multiple uses)

Databases are supported by a database
management system

Layer between applications using the data and the
raw data
Handles requests for data
Manages concurrency
Protects data integrity } consistency

Copyright Melanie Nelson 2007

Data Management without Databases

App #2 App #3App #1

App #1
Files

App #2
Files

App #3
Files

User discovers and
resolves conflicts at
unpredictable times

User manually
transfers data

Copyright Melanie Nelson 2007

Data Management with Databases
User discovers and resolves
conflicts as they occur

App #1 App #2 App #3

DBMS

Database
No need to
“transfer”
data among
apps

Copyright Melanie Nelson 2007

Some Advantages of Databases
Improve interoperability: app #1 has
“sequence”, app #2 has “prot_seq”. Are they
the same thing?
Reduce inconsistency: app #1 says protein A
binds drug Z, app #2 says it doesn’t. Which is
right?
Improve efficiency: scientists/programmers
don’t have to gather data for each
application/question

Copyright Melanie Nelson 2007

Types of Database Systems

Four main types of databases:
Hierarchical
Network
Relational
Object-Oriented

Copyright Melanie Nelson 2007

Hierarchical Databases

Information organized
into tree, or parent-child
relationships
Data gets duplicated
when one child has
more than one parent
Data gets lost when a
child doesn’t have a
parent

Cell
Type 2

CHO
Cells

calmodulin

integrin IV

DUSP-2

integrin IV
p53

Medium
expression

High
expression High

expression

Low
expression

High
expression ICE

Copyright Melanie Nelson 2007

Hierarchical Databases

Historically, the first type of database
IBM’s Information Management System (IMS)
Introduced in 1968

XML can be viewed as a hierarchical
database

Information is organized into tree
Collections of XML files can be used as a
database

Copyright Melanie Nelson 2007

Network Databases

Extends hierarchical
model to allow children
to have multiple parents
Model has:

Records
Links between records

Careful design can
avoid data duplication
Complicated design
and data access

HEK
cells

CHO
cells

CHO
cell
Low
Exp.

HEK
cell
Medium
Exp.

CHO
cell
High
Exp.

HEK
cell
High
Exp.

calmodulin p53DUSP-2

integrin IV
ICE

Copyright Melanie Nelson 2007

Network Databases

Emerged in the 70s
Conference on Data Systems Languages
(CODASYL) produced guidelines for
databases
XML with XLink can be viewed as a network
database

XLink allows links across branches in the XML
tree

Copyright Melanie Nelson 2007

Relational Databases Cell Line

HEK cellsCell line 2

CHO cellsCell line 1

Cell line typeCell line ID

Information is modeled
as tables (relations)
with links between
tables
Rigorous mathematical
basis

Allows prevention of data
duplication and other
data integrity problems
Simplifies data access

HighProtein 4Cell line 2

MediumProtein 2Cell line 2

HighProtein 3Cell line 1

LowProtein 2Cell line 1

HighProtein 1Cell line 1

Expression levelProtein IDCell line ID

Protein Expression

Protein

p53Protein 5

ICEProtein 4

DUSP-2Protein 3

integrin IVProtein 2

calmodulinProtein 1

Protein NameProtein ID

Copyright Melanie Nelson 2007

Relational Databases

Developed in 70s by Dr. E.F. Codd at IBM
Is the dominant model in use today

Oracle
IBM DB2
MS SQL Server
PostgreSQL
MySQL

Copyright Melanie Nelson 2007

Object-Oriented Databases
OODBs store data in
classes, with
associations between
classes
Integrates data storage
with data manipulation:
methods are part of
object
Must be careful to avoid
data duplication and
“orphan” data

CellLine
Type: CHO cells

CellLine
Type: HEK cells

Protein
Name:Calmodulin
Expression: High

Protein
Name: Integrin IV
Expression: Low

Protein
Name: DUSP-2
Expression: High

Protein
Name: Integrin IV
Expression: Medium

Protein
Name: p53
Expression: High

Protein
Name: ICE
Expression: ???

Copyright Melanie Nelson 2007

Object-Oriented Databases

Introduced in 80s, in conjunction with rise in object-
oriented programming techniques

There are difficulties integrating OO programming and
relational DBs
OODBs often have the same problems network DBs had

Lack easy data access of relational DBs
Major relational DBs have introduced “object
extensions”
Ongoing debate about how best to integrate DBs
and OO programming

Many solutions now available to assist with this integration

Copyright Melanie Nelson 2007

Relational vs the Other Models
Relational model attempts to correctly
represent data, without regard to how it will
be used
In other models, how the data will be used
can greatly influence the design

If you design to a particular application, you will
probably make it easy to answer the questions in
that application…
But you may make it harder, or even impossible,
to answer other types of questions!

Copyright Melanie Nelson 2007

Relational vs. Other Models

Relational DBs were intended to free users
from needing a programmer to write new
code to answer each new question
This is particularly useful in science:
scientists will always think of a new question!
SQL still too “programming-like” for many
users

Flexible reporting apps attempt to address this

Copyright Melanie Nelson 2007

The Relational Model

Direct quote from Date:
Data is perceived by users as tables (and nothing
but tables)
The operators at the user’s disposal…are
operators that generate new tables from old, and
those operators include at least
SELECT…,PROJECT, and JOIN

Copyright Melanie Nelson 2007

The Relational Model

The relational model speaks to:
Data structure
Data manipulation
Data integrity

It does not speak to data storage
Relational model refers to logical database
design, not physical database design

Copyright Melanie Nelson 2007

The Relational Model

Mathematically rigorous

When correctly implemented, can guarantee
accuracy of query results (assuming input
was valid!)

No current DBMS fully implements the
relational model

Copyright Melanie Nelson 2007

Relational Terms

Proteins

Protein ID Protein Name

Protein 1 calmodulin

Protein 2 integrin IV

Protein 3 DUSP-2

Protein 4 ICE

Protein 5 p53

Relation = Table
Consists of
•heading (a fixed set
of attributes)
•body (a set of tuples)

Attribute = Column
Also called a field

Tuple = Row
Also called a
record.
A set of
attribute:value
pairs

Primary key = Unique identifier
Attribute or combination of attributes
that uniquely identifies each tuple

Domain = Valid set of values
“A named set of scalar values”
Each attribute has a domain
upon which it is defined

Copyright Melanie Nelson 2007

Properties of Relational Tables

The following properties are a consequence
of the definition of relations, attributes, and
domains:

Each column has a unique name (The heading =
a fixed set of attributes)

All entries in a given column are of the same kind
(Attributes are defined on a domain)

Copyright Melanie Nelson 2007

Properties of Relational Tables

There are no duplicate tuples
“Each row is unique”
The body of a relation is a mathematical set: sets
do not have duplicate elements
Primary key ensures this rule is upheld
Do not circumvent!

Common to use system-assigned numerical value as
primary key
Should have an “alternate key” that is inherent in the
data

Copyright Melanie Nelson 2007

Properties of Relational Tables

The sequence of tuples is unimportant
Sets are unordered

DBA may change way in which rows are
partitioned in storage to improve performance of
certain queries

Never write code that assumes a query will return
results in a given order

If tuple order is meaningful, it should be specified
by an attribute

Copyright Melanie Nelson 2007

Properties of Relational Tables

The sequence of attributes is unimportant
The heading of a relation is also a set

DBA may change physical order of columns to
improve performance of certain queries

Never assume the columns will be returned in a
given order: specify the order in the query

Copyright Melanie Nelson 2007

Properties of Relational Tables
Attribute values are atomic

“Entries in columns are single-valued”
First normal form

PAC1Protein 3

Dual specificity phosphatase 2Protein 3

DUSP-2Protein 3

CaMProtein 1

CalmodulinProtein 1

Protein NameProtein ID

DUSP-2, dual specificity
phosphatase 2, PAC1

Protein 3

Calmodulin, CaMProtein 1

Protein NameProtein ID

PAC1Dual specificity
phosphatase 2

DUSP-2Protein 2

CaMCalmodulinProtein 1

Protein Name 3Protein Name 2Protein Name 1Protein ID

Copyright Melanie Nelson 2007

Types of Relations
Base relation = an autonomous relation (i.e., not
defined in terms of another relation)

What we typically mean when we talk about database
tables

Derived relation = a relation defined in terms of
other relations

Query results, for instance
View = a named derived relation

SQL to generate derived relation is stored in database
Materialized view = a view in which data is actually
copied

“snapshot”
Used to improve performance
Can lead to integrity issues

Copyright Melanie Nelson 2007

Data Integrity
Data in the database is meant to represent
“reality”
Certain combinations of values are not
possible in the real world, so the database
should exclude them
Rules apply to base relations
Three types:

Entity Integrity
Referential Integrity
“Domain Integrity” (other rules)

Copyright Melanie Nelson 2007

Candidate Keys

Candidate keys
A candidate key can uniquely identify each row
A candidate key cannot be reduced: i.e., there is
no subset of the attributes in the key that also
uniquely identify each row

Primary key is the candidate key chosen to
be used
Alternate keys = candidate keys not chosen
to be primary key

Copyright Melanie Nelson 2007

Entity Integrity
No part of the primary key may be NULL
NULL = absence of value

Value doesn’t exist
Value isn’t known

The primary key uniquely identifies a row
If part is NULL, it means that we do not know the
value
It could be a value that is already represented in
the table
Therefore, we can’t uniquely identify the row

Copyright Melanie Nelson 2007

Referential Integrity: Foreign Keys
Links between two related tables are made
via foreign keys
Foreign key = the primary key of a related
table

Available_Protein

4DUSP-2Protein 3

56integrin IVProtein 2

1calmodulinProtein 1

Species_
ID

Protein_
Name

Protein_
ID

NcowBos taurus56

Yhouse mouseMus
musculus

4

YhumanHomo
sapiens

1

Study_
in_Lab

Species_
Common_
Name

Species_
Sci_Name

Species_
ID

Species

Primary key
of parent table

Foreign key of
child table

Copyright Melanie Nelson 2007

Referential Integrity

A foreign key value must either
Match a primary key value in the referenced table
Be NULL

NcowBos taurus56

Yhouse mouseMus
musculus

4

YhumanHomo
sapiens

1

Study_i
n_Lab

Species_
Common_
Name

Species_
Sci_Name

Species_
ID

Species

Available_Protein

4DUSP-2Protein 3

72PTP1BProtein 9

56integrin IVProtein 2

1calmodulinProtein 1

Species_
ID

Protein_
Name

Protein_
ID

Copyright Melanie Nelson 2007

Referential Integrity
Prevents “orphan” rows in child table

Child data usually loses significant meaning
without parent information

In practice, allowing a foreign key to be NULL
can create problems
In practice, NULLs can create problems!

What does it mean? Value doesn’t exist or value
unknown?
Consider using defaults instead

Copyright Melanie Nelson 2007

Domain Integrity

Attribute integrity
Values of an attribute are taken from the specified
domain
Domain support in database management
systems is weak

Business rules
All the other rules the data must follow
Implemented in triggers, stored procedures,
application logic

Copyright Melanie Nelson 2007

Data Definition and Manipulation
Any functioning DBMS must provide a
language for data definition and manipulation

Data definition = a way to create relations and
store data in them
Data manipulation = a way to get data back out

Codd's papers provided a relational algebra
and a relational calculus

SQL is the standard language by which this is
implemented

Copyright Melanie Nelson 2007

Properties of Data Manipulation

Closure: relational operators operate on
relations and produce relations

Allows nested expressions

Relational operators are not affected by
changes to physical storage of data

Copyright Melanie Nelson 2007

Introduction to SQL

SQL = Structured Query Language
Except that the spec says SQL doesn’t stand for anything

Standard language for storing and accessing data in
relational databases
A nonprocedural language

Say what you want, not how to get it
A RDBMS has a query optimizer that figures out how to get
the data

RDBMS purists point out that it is not fully compliant
with relational database theory

Poor support of domains
Allows tables without keys

Copyright Melanie Nelson 2007

Introduction to SQL

Data Definition Language (DDL)
CREATE TABLE, DROP TABLE
CREATE INDEX
Constraints: UNIQUE, PRIMARY KEY, FOREIGN
KEY, NOT NULL

Data Manipulation Language (DML)
INSERT, UPDATE, DELETE
SELECT
UNION, INTERSECT, EXCEPT

Copyright Melanie Nelson 2007

Example Tables

Bio_molecule
Bio_mol_id INTEGER

Species VARCHAR2 (100)
Bio_mol_type_code CHAR (1) (FK)
Function_desc VARCHAR2 (2000) (O)

Bio_molecule_sequence
Bio_mol_id INTEGER (FK)
Source_database VARCHAR2 (32)
Date_inserted DATETIME
Seq_text CLOB

Z

Bio_molecule_name
Bio_mol_id INTEGER (FK)
Bio_mol_name VARCHAR2 (500)

Primary_name CHAR (1)

Bio_molecule_type
Bio_mol_type_code CHAR (1)
Bio_mol_type VARCHAR2 (32)
Bio_mol_desc VARCHAR2 (500)

Copyright Melanie Nelson 2007

CREATE TABLE

Use to create a table
CREATE TABLE table1
(column1 datatype PRIMARY KEY,
column2 datatype)

Each table should have a primary key
constraint on one or more columns
Use UNIQUE to enforce alternate keys

Copyright Melanie Nelson 2007

CREATE TABLE

Create a table to store biological molecules

CREATE TABLE Bio_molecule (
Bio_mol_id INTEGER PRIMARY KEY,
Species VARCHAR2 (50) NOT NULL,
Bio_mol_type_code CHAR (1) NOT NULL,
Function_desc VARCHAR2 (2000)

)

PRIMARY KEY is equivalent to UNIQUE, NOT NULL

Copyright Melanie Nelson 2007

Other DDL Commands

ALTER TABLE
Add/drop/modify a column of a table
Not all DBMS support drop and modify

CREATE INDEX
Create an index on a column or combination of
columns
Implementation detail: indexes are used by DBMS
to enforce constraints and optimize lookup
UNIQUE constraints automatically create index

DROP TABLE, DROP INDEX

Copyright Melanie Nelson 2007

INSERT

Use INSERT to get data into a table
INSERT INTO table1 (column list)
VALUES (value list)
Column list is optional, but should specify it if
the statement is included in application code

Remember, the columns in a table are not in any
particular order!

Copyright Melanie Nelson 2007

INSERT

Insert the name “PTP1B” for biological
molecule #1456. It is a primary name.

INSERT INTO Bio_molecule_name
(Bio_mol_id, Bio_mol_name, Primary_name)

VALUES (1456, ‘PTP1B’, ‘Y’)

Text is surrounded by single quotes.

Copyright Melanie Nelson 2007

UPDATE

Use to alter data in a table
UPDATE table1
SET column1 = new value,

column2 = new value
WHERE column3 = condition
WHERE clause is optional. Without it, the
UPDATE will apply to all rows in the table

Copyright Melanie Nelson 2007

UPDATE
Change calmodulin to be the primary name.

UPDATE Bio_molecule_name
SET Primary_name = ‘Y’
WHERE Bio_mol_name = ‘calmodulin’
AND Bio_mol_id = 1

Bio_mol_id portion of where clause is probably
unnecessary.

Copyright Melanie Nelson 2007

DELETE

Removes row(s) from table
DELETE FROM table1
WHERE column1 = condition
WHERE clause is optional. Without it,
DELETE will remove all rows from the table.

Won’t remove table
To do this, use DROP TABLE

Copyright Melanie Nelson 2007

DELETE

Delete all Incyte sequence data

DELETE FROM Bio_molecule_sequence
WHERE Source_database = ‘INCYTE’

Copyright Melanie Nelson 2007

Relational Operators: Select
Also called restrict
Retrieve a subset of rows (tuples) from a relation
Subset is determined by a selection criteria
SELECT *
FROM Bio_molecule_name
WHERE Bio_mol_id = 1

Bio_molecule_name List all the names of Biomolecule 1
Bio_mol_id Bio_mol_name Primary_ name

1

1

3

3

3 PAC1 N

YCalmodulin

CaM

DUSP-2

N

N

YDual specificity
phosphatase 2

Bio_mol_
id

Bio_mol_name Primary_
name

1 Calmodulin

CaM

Y

1 N

Copyright Melanie Nelson 2007

Relational Operators: Project
Retrieve a subset of columns (attributes) from a relation
SELECT Bio_mol_id, Bio_mol_name
FROM Bio_molecule_name
WHERE Primary_name=‘Y’

Get a list of primary
names of molecules

Bio_mol_
id

Bio_mol_name Primary_
name

1 Calmodulin Y

1 CaM N

3 DUSP-2 N

3 Dual specificity
phosphatase 2

Y

3 PAC1 N

Bio_molecule_name

Bio_mol
_id

Bio_mol_ name

1 Calmodulin

3 Dual specificity
phosphatase 2

Copyright Melanie Nelson 2007

SELECT

Use to get information out of tables
SELECT column1, column2
FROM table1
WHERE column3 = condition
WHERE clause is optional. Without it, the
statement returns all rows in the table

Copyright Melanie Nelson 2007

SELECT
List the primary name and bio_mol_id for all
molecules:

SELECT Bio_mol_id, Bio_mol_name
FROM Bio_molecule_name
WHERE Primary_name = ‘Y’

List all biological molecules stored in the
database:

SELECT *
FROM Bio_molecule

Copyright Melanie Nelson 2007

SELECT DISTINCT

Use to get a list of distinct values
SELECT DISTINCT (column1, column2)
FROM table1
Can have one or more columns in the select
statement
Multiple columns will provide distinct
combinations of values of those columns

Copyright Melanie Nelson 2007

SELECT DISTINCT
Find out what types of biological molecules are

represented in the Bio_molecule table:

SELECT DISTINCT Bio_mol_type_code
FROM Bio_molecule

Copyright Melanie Nelson 2007

Relational Operators: Product
A cartesian product of two relations
Each row in relation 1 is combined with each
row in relation 2
SELECT *
FROM Bio_molecule, Bio_molecule_type

Copyright Melanie Nelson 2007

Relational Operators: Product
Bio_molecule
Bio_
mol_
id

Species Bio_
mol_
type_
code

Function
_desc

1 Homo
sapiens

Mus
musculus

Calcium
sensor

3

P

M Phospha-
tase

Bio_mole_
type_code

Bio_mol_
type

Bio_mol_
desc

P Protein Expressed
protein

M mRNA Messenger
RNA

bm.
Bio_
mol
_id

bm.
Species

bm.
Bio_
mol_
type_
code

bm.
Function
_desc

bmt.
Bio_
mol_
type_
code

bmt.
Bio_
mol_
type

bmt.Bio_
mol_
desc

1 Homo
sapiens

P Calcium
sensor

P

M

P

M

Expressed
protein

1 Homo
sapiens

P Calcium
sensor

Protein

mRNA

Protein

Messen-
ger RNA

3 Mus
musculus

M Phospha-
tase

Expressed
protein

3 Mus
musculus

M Phospha-
tase

mRNA Messen-
ger RNA

Bio_molecule_type

Copyright Melanie Nelson 2007

Relational Operators

Join
Combination of product and select
Combines row from relation 1 with row from
relation 2 only when selection criteria are met
Criteria specify when rows are to be combined
SELECT *
FROM Bio_molecule, Bio_molecule_type
WHERE Bio_molecule.Bio_mol_type_code =
Bio_molecule_type.Bio_mol_type_code

Copyright Melanie Nelson 2007

Relational Operators: Join
Include biomolecule type in molecule informationBio_molecule

Bio_
mol_
id

Species Bio_
mol_
type_
code

Function
_desc

1 Homo
sapiens

Mus
musculus

Calcium
sensor

3

P

M Phospha-
tase

bm.
Bio_
mol
_id

bm.
Species

bm.
Bio_
mol_
type_
code

bm.
Function
_desc

bmt.
Bio_
mol_
type_
code

bmt.
Bio_
mol_
type

bmt.Bio_
mol_
desc

1 Homo
sapiens

P Calcium
sensor

P

M

Expressed
protein

3 Mus
musculus

M Phospha-
tase

Protein

mRNA Messen-
ger RNA

More meaningful than a product!
More likely to combine with a project and
exclude the bio_mol_type_code.

Bio_mole_
type_code

Bio_mol_
type

Bio_mol_
desc

P Protein Expressed
protein

M mRNA Messenger
RNA

Bio_molecule_type

Copyright Melanie Nelson 2007

Relational Operators: Join

Types of join
Equi-join

Join criterion is equality of attribute(s) in two tables
Natural join

Equi-join in which redundant columns are removed from
the result set

Outer join
Returned relation includes rows that are missing from
one of the original tables

Copyright Melanie Nelson 2007

JOIN
Joins are used to combine information from multiple
tables

Two types of syntax

SELECT table1.column1, table2.column2
FROM table1, table2
WHERE table1.column3 = table2.column3

SELECT table1.column1, table2.column2
FROM table1
JOIN table 2 ON (table1.column3 = table2.column3)

Copyright Melanie Nelson 2007

JOIN
Show the biomolecule type, rather than the code,

for all types represented in Bio_molecule:

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm,

Bio_molecule_type bmt
WHERE bm.Bio_mol_type_code = bmt.Bio_mol_type_code

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm
JOIN Bio_molecule_type bmt

ON bm.Bio_mole_type_code = bmt.Bio_mol_type_code

Copyright Melanie Nelson 2007

LIKE and Wildcards
Wildcards are ‘%’ and ‘_’

‘%’ = any number of characters
‘_’ = exactly one character

Used with keyword LIKE
Select information on all biomolecules with
the word “kinase” in one of their names

SELECT bm.Bio_mol_id, Bio_mol_name, Species
FROM Bio_molecule bm,

Bio_molecule_name bmn
WHERE bm.Bio_mol_id = bmn.Bio_mol_id
AND Bio_mol_name LIKE ‘%kinase%’

Contents of strings are case-sensitive

Copyright Melanie Nelson 2007

ORDER BY

ORDER BY returns rows in order
List the names assigned to Biomolecule #478
in alphabetical order:

SELECT Bio_mol_name
FROM Bio_molecule_name
WHERE Bio_mol_id = 478
ORDER BY Bio_mol_name ASC

ASC or DESC

Copyright Melanie Nelson 2007

Aggregate Functions
COUNT

Count number of sequences from RefSeq DB
SELECT COUNT (*)
FROM Bio_molecule_sequence
WHERE Source_database = ‘RefSeq’

GROUP BY
Count number of sequences from each DB
SELECT Source_database, COUNT (*)
FROM Bio_molecule_sequence
GROUP BY Source_database

Copyright Melanie Nelson 2007

Aggregate Functions

MAX and MIN
SELECT MAX(Date_inserted)
FROM Bio_molecule_sequence
Can be used on numeric and date fields

SUM
AVG

Copyright Melanie Nelson 2007

String Functions

DBMS specific implementations
Usually have at least:

Substrings
Length

Copyright Melanie Nelson 2007

Subqueries
Can nest SQL statements:

Select all names for human proteins:
SELECT Bio_mol_name
FROM Bio_molecule_name
WHERE Bio_mol_id IN (

SELECT Bio_mol_id
FROM Bio_molecule
WHERE Species = ‘Homo sapiens’
AND Bio_mol_type_code = ‘P’

)

Copyright Melanie Nelson 2007

Subqueries
EXISTS

Another way to express subsets
SELECT Bio_mol_name
FROM Bio_molecule_name bmn
WHERE EXISTS (

SELECT *
FROM Bio_molecule bm
WHERE Species = ‘Homo sapiens’
AND Bio_mol_type_code = ‘P’
AND bm.Bio_mol_id = bmn.Bio_mol_id

)

Copyright Melanie Nelson 2007

Subqueries

Can also use NOT IN and NOT EXISTS
Choice between using JOIN, IN, or EXISTS is
a performance tuning issue
Optimizer will usually “convert” for you, but
sometimes it pays to optimize, or “tune” the
query yourself
For more details:

SQL Performance Tuning, by P. Gulutzan and T.
Pelzer

Copyright Melanie Nelson 2007

Subqueries
Can join back to the same table
Show the primary name for all biomolecules for
which there are no other names:
SELECT Bio_mol_name
FROM Bio_molecule_name bmn1
WHERE Primary = ‘Y’
AND NOT EXISTS (

SELECT *
FROM Bio_molecule_name bmn2
WHERE Primary <> ‘Y’
AND bmn2.Bio_mol_id = bmn1.Bio_mol_id

)

Copyright Melanie Nelson 2007

CLOBs

CLOB = Character Large Object
Implementation is very DBMS specific
Usually do not have access to many
functions

No substring or length functions
Can’t use in WHERE clause
Can even be difficult to load in and select out

Copyright Melanie Nelson 2007

Relational Operators: Union
Merges two relations
Result is a set that contains all rows in relation 1 and
all rows in relation 2
Useful for combining subsets
SELECT *
FROM Protein_Sequence
UNION
SELECT *
FROM Nucleotide_Sequence

Copyright Melanie Nelson 2007

Relational Operators: Union
Get a list of all sequences

KLMIKAGGKLV….Protein 2

ALVCYFMIEGD….Protein 1

SequenceBiopol_ID

Protein_Sequence

KLMIKAGGKLV….Protein 2

ATTGCATTAGC….DNA 1

GCGGTATGCC….DNA 2

ALVCYFMIEGD….Protein 1

SequenceBiopol_ID

GCGGTATGCC….DNA 2

ATTGCATTAGC….DNA 1

SequenceBiopol_ID

Nucleotide_Sequence

More likely to be used in
combination with projection

Copyright Melanie Nelson 2007

Relational Operators: Union

Biopol
_ ID

Sequence pI

Protein
1

ALVCYFMIEGD….

KLMIKAGGKLV….

4.5

Protein
2

7.3

Protein_Sequence Get a list of all sequences

Biopol_ID Sequence

Protein 1 ALVCYFMIEGD….

Protein 2 KLMIKAGGKLV….

DNA 1 ATTGCATTAGC….

DNA 2 GCGGTATGCC….

Nucleotide_Sequence

Biopol
_ID

Sequence Promoter

DNA 1 ATTGCATTAGC….

GCGGTATGCC….

TATA

DNA 2 TAAA
SELECT Biopol_ID, Sequence

FROM Protein_Sequence
UNION
SELECT Biopol_ID, Sequence
FROM Nucleotide_Sequence

Copyright Melanie Nelson 2007

Relational Operators: Intersection
Returns rows common to both relations

Used to identify overlapping subsets

SELECT *
FROM Protein_Stock
INTERSECT
SELECT *
FROM Plasmid_Stock

Copyright Melanie Nelson 2007

Relational Operators: Intersection
Find proteins for which
lab has both plasmid and
protein prep in stock

Box 5Protein 2

Box 2Protein 1

Stock_locationProtein_ID

Protein_Stock

Box 2Protein 1

Stock_locationProtein_ID

Box 3Protein 3

Box 2Protein 1

Stock_locationProtein_ID

Plasmid_Stock

Again, more likely to be
used in combination with
projection

Copyright Melanie Nelson 2007

Relational Operators: Difference
Subtraction: returns rows found in relation 1
but not in relation 2

Used to identify non-overlapping subsets

SELECT *
FROM Protein_Stock
EXCEPT
SELECT *
FROM Plasmid_Stock

Copyright Melanie Nelson 2007

Relational Operators: Difference
Find proteins for which
lab has plasmid but no
protein prep in stock
(time to make more!)

Box 5Protein 2

Box 2Protein 1

Stock_locationProtein_ID

Protein_Stock

Box 3Protein 3

Stock_locationProtein_ID

Box 3Protein 3

Box 2Protein 1

Stock_locationProtein_ID

Plasmid_Stock

Again, more likely to be
used in combination with
projection

Copyright Melanie Nelson 2007

Relational Operators: Division

Returns column values from one relation for
which there are matching column values for
every row in another relation
A fancy sort of intersection:

Finds the subset of relation 1 that “meets criteria”
established by relation 2

No simple SQL implementation. See:
http://www.developersdex.com/gurus/articles/
113.asp

Copyright Melanie Nelson 2007

Relational Operators: Division
Available_Protein

house
mouse

Mus
musculus

calmodulinProtein 1

humanHomo
sapiens

ICEProtein 3

cowBos taurusintegrin IVProtein 2

humanHomo
sapiens

calmodulinProtein 1

Species_
Common_
Name

Species_
Sci_Name

Protein_
Name

Protein_
ID Find proteins that are

available in all
species studied in the
lab

calmodulinProtein 1

Protein_
Name

Protein_
ID

house mouseMus musculus

humanHomo sapiens

Species_
Common_ Name

Species_
Sci_Name

Lab_Species

Copyright Melanie Nelson 2007

Reading and Homework

Recommended reading for this week’s class:
Chapters 1-3 of Fleming and von Halle
Homework handout

Fleming and von Halle:
Recommended reading for next week’s class: Chapter 4
Optional reading: Chapters 5-7

The Trip-Packing Dilemma article (on website)
Optional: Writing Quality Requirements article (on
website)

	Biological Database DesignWeek 1
	Introductions
	Course Overview
	Course Overview
	Course Overview
	Course Overview
	Final Project
	Introduction to Databases
	Data Management without Databases
	Data Management with Databases
	Some Advantages of Databases
	Types of Database Systems
	Hierarchical Databases
	Hierarchical Databases
	Network Databases
	Network Databases
	Relational Databases
	Relational Databases
	Object-Oriented Databases
	Object-Oriented Databases
	Relational vs the Other Models
	Relational vs. Other Models
	The Relational Model
	The Relational Model
	The Relational Model
	Relational Terms
	Properties of Relational Tables
	Properties of Relational Tables
	Properties of Relational Tables
	Properties of Relational Tables
	Properties of Relational Tables
	Types of Relations
	Data Integrity
	Candidate Keys
	Entity Integrity
	Referential Integrity: Foreign Keys
	Referential Integrity
	Referential Integrity
	Domain Integrity
	Data Definition and Manipulation
	Properties of Data Manipulation
	Introduction to SQL
	Introduction to SQL
	Example Tables
	CREATE TABLE
	CREATE TABLE
	Other DDL Commands
	INSERT
	INSERT
	UPDATE
	UPDATE
	DELETE
	DELETE
	Relational Operators: Select
	Relational Operators: Project
	SELECT
	SELECT
	SELECT DISTINCT
	SELECT DISTINCT
	Relational Operators: Product
	Relational Operators: Product
	Relational Operators
	Relational Operators: Join
	Relational Operators: Join
	JOIN
	JOIN
	LIKE and Wildcards
	ORDER BY
	Aggregate Functions
	Aggregate Functions
	String Functions
	Subqueries
	Subqueries
	Subqueries
	Subqueries
	CLOBs
	Relational Operators: Union
	Relational Operators: Union
	Relational Operators: Union
	Relational Operators: Intersection
	Relational Operators: Intersection
	Relational Operators: Difference
	Relational Operators: Difference
	Relational Operators: Division
	Relational Operators: Division
	Reading and Homework

