
Copyright Melanie Nelson 2006

Biological Database Design
Week 5

Spring ‘06
Melanie Nelson, Ph.D.



Copyright Melanie Nelson 2006

Physical Database Design
Physical design is process by which the logical 
design shown in the entity-relationship diagram is 
transformed into tables and constraints in the 
database
Also decide storage details and indexing 
requirements
Highly dependent on choice of RDBMS and usage 
requirements of the database

Therefore, I am not going to cover this in detail
For most small, research-type databases, physical design 
decisions will not be crucial
For large, production level databases, either take some 
more DB classes or hire a DBA!



Copyright Melanie Nelson 2006

Transforming ER Diagrams into 
Tables: General Rules

Each entity is a table
Each attribute is a column
Unless an attribute is marked as optional (O), the 
columns has a NOT NULL constraint
If the primary key is a system-generated unique 
identifier, it is a good idea to add UNIQUE 
constraints to columns that are part of an alternate 
key

This ensures that the actual data in the table is not 
duplicated
Remember to put constraint on combination of columns 
that make up the key (not on each column individually)



Copyright Melanie Nelson 2006

Transforming ER Diagrams into 
Tables: Exceptions 

May decide to store all subtypes in one table
Reduces number of joins needed
Downside: any attributes unique to one or the 
other subtypes must be NULLable for all subtypes

May generalize: i.e., group some related 
entities into one table

I usually only do this if I can include it in my logical 
model, i.e., if the entities I’m grouping can be 
replaced by a supertype entity
Examples of this will be shown later in lecture



Copyright Melanie Nelson 2006

Transforming ER Diagrams into 
Tables: Exceptions

May decide to remove some of the NOT 
NULL constraints

Usually done for ease of data loading
I don’t recommend this: either the data is required 
or it isn’t!
Better idea: temporarily disable a constraint for a 
batch load, and then reapply and flag (and deal 
with!) exceptions



Copyright Melanie Nelson 2006

Transforming ER Diagrams into 
Tables: Exceptions

May decide not to apply UNIQUE constraints across 
large or complicated alternate keys

These constraints may unacceptably slow down data entry
May make a business decision not to look for duplicates (for 
instance, not looking for exact duplicate sequences from 
different sources)
Be careful: this creates a risk that data in table will be 
duplicated even though the (system-generated) primary key 
is unique!
Consider running a “data cleaning” program periodically



Copyright Melanie Nelson 2006

Denormalizing
IF any denormalizing is done, it is done during physical design
I DON’T RECOMMEND DOING THIS!
Before denormalizing:

Tune queries
Add or tune indexes
Make sure developers are using bind variables (so that queries 
are cached)
Increase cache size
Understand the cost: perhaps users can accept slower queries 
when they realize that the alternative is to risk data integrity
Hire a good DBA, who can do all of the above better

If you must denormalize, I recommend the use of “summary 
tables” or materialized views. More on this later in the lecture.



Copyright Melanie Nelson 2006

Biological Databases are Like Other 
Databases

In many ways, biological databases are no 
different from other databases

Should follow good design practices that have 
been developed in ~30 years of work on relational 
databases
Should take advantage of the many excellent 
general database design and performance tuning 
resources that are available



Copyright Melanie Nelson 2006

Unusual Aspects of Biological 
Databases

Large subject area, with many 
interrelationships among data
Complex, constantly evolving “business 
rules”
Special requirements of scientific culture
Prevalence of complex data types and 
reliance on flat file formats



Copyright Melanie Nelson 2006

Handling the “Largeness” of Biology

Biology encompasses many different “levels” of 
enquiry

Evolutionary and populations biology
Medicine and gross anatomy
Cell biology
Molecular biology and biochemistry

Biology is integrative
It is common to use information from many disciplines
Biological databases are beginning to cross disciplines, too

An 
incomplete 
list!}



Copyright Melanie Nelson 2006

Handling the “Largeness” of Biology

It is not possible to design a database that 
can handle all of biology

At least not in one iteration!
Carefully define the scope of the database

Areas that are in scope should be addressed in 
full detail
Areas outside of scope can be simplified, or 
handled as text fields

If scope still seems large, consider 
addressing only a portion of it in initial release



Copyright Melanie Nelson 2006

Handling “Largeness” of Biology

A common mistake of DB designers with no 
biological background is to fail to stop 
detailed design at appropriate place

Will ask biologists to describe data, and biologists 
will oblige… but the full structure of that data 
might be out of scope
In general, DB designers with a background in 
biology are more likely to know when to stop 
describing the data in detail… but they should still 
define their DB scope!



Copyright Melanie Nelson 2006

Examples of Scope Boundaries
The Protein Databank (PDB)

Database to store information on 3D structure of proteins 
and nucleic acids
In scope:

Coordinates of structures
Experimental details of how structures were determined
Information about the construct used to produce material used 
in experiments

Out of scope:
Regulation of gene that produces protein/nucleic acid in vivo
Audit trail of experiments used to determine structures

On the boundary:
Information about function of protein/nucleic acid in structure
Details about how any post-translational modifications on the 
protein were produced



Copyright Melanie Nelson 2006

Example of Scope Boundaries

Database tracking interactions between enzymes 
and inhibitors

In scope
Exact sequences against which inhibition is measured
Relationships among inhibitors
Inhibition constants 

Out of scope
Methods for synthesizing of inhibitors
Evolutionary relationships among homologous enzymes

On the boundary
Experimental protocol used to measure inhibition
Relationships between orthologous enzymes



Copyright Melanie Nelson 2006

Scope Boundaries in DB Desgin
Exact location of boundary is a property of the 
individual project

Different databases to store protein – inhibitor relationships 
may have different boundaries

One may want to track at the level of atomic interactions 
between protein and inhibitor
Another might not need atomic detail in interactions, but 
require more detailed information about experimental 
protocols
A third might need both!

Scope may be refined during detailed requirements 
gathering, but always know when you are redefining it!

Scope creep (a close relative of feature creep) is a 
project killer



Copyright Melanie Nelson 2006

Scope Boundaries in DB Design

Things that are out of scope may be modeled as 
free text (comment fields) or ignored
Things on the boundary often need user-extensible 
classifications

These may also show up as free text
If an existing controlled vocabulary exists, using it gives 
you extra information “for free”

Everything in scope must be modeled in full detail
Should incorporate existing controlled vocabularies where 
possible
May find you need to extend/modify existing vocabularies



Copyright Melanie Nelson 2006

Protein Function Out of Scope
Protein

Protein_id INTEGER

Bio_function VARCHAR2 (2000)

The biological function of a protein is 
stored as free text. This isn’t much use 
for searching, but does provide context 
to scientists using the database. Multiple 
functions are all just listed in the free text 
field.

Even if biological function is outside of your scope, you may want to 
separate multiple functions, and track who provided each function:

Protein

Protein_id INTEGER

Protein_bio_function

Protein_id INTEGER (FK)
Bio_function VARCHAR2 (2000)
Submitter_id INTEGER (FK)
Date_submitted DATETIME

performs Protein_bio_function_id INTEGER



Copyright Melanie Nelson 2006

Protein Function on the Scope 
Boundary

Protein

Protein_id INTEGER
Protein_bio_function

Protein_id INTEGER (FK)
Bio_function_id INTEGER (FK)

Bio_function
Bio_function_id INTEGER

Bio_function_ext_id VARCHAR2 (50)
Bio_function_source_id INTEGER (FK)
Bio_function_type_code CHAR
Bio_function_desc VARCHAR2 (2000)
Comment VARCHAR2 (2000)

Bio_function_source
Bio_function_source_id INTEGER
Bio_function_source_name VARCHAR2 (200)
Bio_function_source_URL VARCHAR2 (500)
Bio_function_source_desc VARCHAR2 (2000)

Bio_function_type
Bio_function_type_code CHAR
Bio_function_type_ name VARCHAR2 (100)
Bio_function_type_desc VARCHAR2 (2000)

describes

classifies

Is performed by

performs



Copyright Melanie Nelson 2006

Protein Function on the Scope 
Boundary

Bio_function
Bio_function_id INTEGER

Bio_function_ext_id VARCHAR2 (50)
Bio_function_source_id INTEGER (FK)
Bio_function_type_code CHAR
Bio_function_desc VARCHAR2 (2000)
Comment VARCHAR2 (2000)

Bio_function_source
Bio_function_source_id INTEGER
Bio_function_source_name VARCHAR2 (200)
Bio_function_source_URL VARCHAR2 (500)
Bio_function_source_desc VARCHAR2 (2000)

Bio_function_type
Bio_function_type_code CHAR
Bio_function_type_ name VARCHAR2 (100)
Bio_function_type_desc VARCHAR2 (2000)

describes

classifies

Some common biological 
function types are:
•Biochemical
•Cellular
•Pathological

Sources of biological function include:
•Enzyme commission (EC) numbers
•Gene ontology (GO)
•Internal/proprietary sources



Copyright Melanie Nelson 2006

Protein Function In Scope
Handling protein function when it is within the scope of your database is 
quite complex and will almost certainly require generalization

If you try to model each type of function and each aspect of function 
separately, your data model will be very large
Non-generalized data model is also unlikely to be able to handle evolving 
field

Some things to think about
Are all types of function within scope, or only one type (such as 
biochemical)?
Will you generate your own classification scheme and cross-reference it to 
public schemes like EC numbers or GO, or limit yourself to the public 
schemes

Scientists must be involved in this decision
Public schemes are inadequate for some applications

Where will the functional data come from?
You will almost certainly need to track source

Example data model: the aMAZE database
www.amaze.ulb.ac.be
Representing and analysing molecular and cellular function using the 
computer. J. van Helden, et. al. (2000) Biol. Chem. 381:921-935



Copyright Melanie Nelson 2006

Handling Evolving “Business Rules”

Our understanding of biology is far from 
complete, and constantly changing
Can never fully know the “business rules” for 
a biological database

The rules that are derived from biology are 
necessarily subject to change
Be wary of organization specific limitations on 
complexity when it is within scope

These are likely to change as the needs of the 
organization evolve



Copyright Melanie Nelson 2006

Use of Generalization
Generalization in databases

Storing multiple subtypes of data in a table (or set of tables) that 
represent the supertype
May lead to some NULLable attributes

NULLs must be allowed on attributes that apply only to some of the 
subtypes
For this reason, may not be appropriate for some data

Can avoid NULLs by having separate subtype tables as well as 
the supertype table

If you represent the supertype rather than the individual 
subtypes, your database schema is more robust to changes in 
data being stored
Generalization can also decrease the size of your schema

However, abstraction may make schema more difficult to 
understand



Copyright Melanie Nelson 2006

Example of Generalization

Database to store information about biological 
molecules

In requirements, scientists indicate they need to store data 
about proteins, genes, and lipids

Protein

Protein_id INTEGER

Gene

Gene_id INTEGER
Lipid

Lipid_id INTEGER

Tables to store protein 
data, including:
•Protein sequences
•Protein functions
•3-D structures

Tables to store lipid 
data, including:
•Lipid functions
•Chemical composition
•Biophysical properties

Tables to store gene 
data, including:
•Gene sequences
•Gene functions
•Gene regulation

Similar or overlapping attribute lists are a clue 
that you should consider generalizing



Copyright Melanie Nelson 2006

Generalizing Biological Molecules

Further consideration reveals that there are many types of 
biological molecules not covered in current requirements

mRNA
Ribosomal RNA
Small molecule metabolites
Inorganic ions
Etc.

Scientists may not need to store information about these now, 
but this may change
You can design your database so that it can store at least basic
information about the other types of molecules

If (when!) scientists need to store information about these types, 
the DB can accommodate
May need to add subtype tables to handle data specific to the 
new types



Copyright Melanie Nelson 2006

Generalizing Biological Molecules

Bio_molecule
Bio_molecule_id INTEGER
Bio_molecule_type_code CHAR (FK)

Protein
Bio_molecule_id INTEGER (FK)

Gene
Bio_molecule_id INTEGER (FK)

Lipid
Bio_molecule_id INTEGER (FK)
SMILES_string VARCHAR2 (500)

Bio_molecule_type

Bio_molecule_type_code CHAR
Bio_molecule_type VARCHAR2 (100)
Bio_molecule_type_desc VARCHAR2 (2000)

Bio_molecule_type_code

Protein_gene_reln
Protein_id INTEGER (FK)
Gene_id INTEGER (FK

Codes for

Is coded 
for by

By indicating an incomplete set of 
subtypes and using a “look up” table 
for biomolecule types, this design 
allows basic information to be stored 
about other types of biomolecules.



Copyright Melanie Nelson 2006

Generalizing Biological Molecules
Bio_molecule_nameBio_molecule

Bio_molecule_id INTEGER
Bio_molecule_type_code CHAR (FK)

Bio_molecule_function
Bio_molecule_function_id INTEGER
Bio_molecule_id INTEGER (FK)
Bio_molecule_function VARCHAR2 (200)
Function_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

Bio_molecule_id INTEGER (FK)
Bio_molecule_name VARCHAR2 (200)
Name_source VARCHAR2 (200)
Primary CHAR

Bio_molecule_regulation
Bio_molecule_regulation_id INTEGER
Bio_molecule_id INTEGER (FK)
Regulation_method VARCHAR2 (200)
Regulation_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

P

Without generalization, I would 
have needed one function table for 
each biomolecule type



Copyright Melanie Nelson 2006

Generalizing Biological Molecules
Bio_molecule

Bio_molecule_id INTEGER
Bio_molecule_type_code CHAR (FK)

Bio_sequence
Bio_sequence_id INTEGER
Bio_molecule_id INTEGER(FK)
Sequence_source VARCHAR2 (200)
Source_db_sequence_ident VARCHAR2 (50)
Sequence_text CLOB

Bio_molecule_structure
Bio_structure_id INTEGER
Bio_molecule_id INTEGER(FK)
Structure_type_code CHAR (FK)
Structure_source VARCHAR2 (200)
Source_db_structure_ident VARCHAR2 (50)
Structure_text CLOB (O)

Biophys_property
Biophys_property_id INTEGER
Bio_molecule_id INTEGER(FK)
Biophys_property_type_id (FK)
Biophys_property_value FLOAT
Biophys_property_source VARCHAR2 (200)
Comment VARCHAR2 (2000)

Biophys_property_type
Biophys_property_type_id INTEGER
Biophys_property_type VARCHAR2 (200)
Biophys_property_units VARCHAR2 (50)
Biophys_property_type_desc VARCHAR2 (2000)

None of the relationships are required, 
because no type of info is stored for all 
biomolecule types



Copyright Melanie Nelson 2006

Further Generalization
Bio_molecule_nameBio_molecule

Bio_molecule_id INTEGER
Bio_molecule_type_code CHAR (FK)

Bio_molecule_function
Bio_molecule_function_id INTEGER
Bio_molecule_id INTEGER (FK)
Bio_molecule_function VARCHAR2 (200)
Function_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

Bio_molecule_id INTEGER (FK)
Bio_molecule_name VARCHAR2 (200)
Name_source VARCHAR2 (200)
Primary CHAR

Bio_molecule_regulation
Bio_molecule_regulation_id INTEGER
Bio_molecule_id INTEGER (FK)
Regulation_method VARCHAR2 (200)
Regulation_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

P

Notice the similar attribute lists for 
these three entities!



Copyright Melanie Nelson 2006

Further Generalization
Bio_molecule

Bio_molecule_id INTEGER
Bio_molecule_type_code CHAR (FK)
Primary_name VARCHAR2 (200)

Bio_molecule_annotation
Annotation_id INTEGER
Bio_molecule_id INTEGER (FK)
Annotation_type_id INTEGER (FK)
Annotation_text VARCHAR2 (200)
Annotation_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

One advantage of using a primary_name
attribute: it allows the other names to be 
treated as annotations.

Annotation_type
Annotation_type_id INTEGER

Annotation_type VARCHAR2 (50)
Annotation_type_desc VARCHAR2 (2000)

This design has two advantages:
•Fewer entities
•Easy to add new annotation types



Copyright Melanie Nelson 2006

Limits of Generalization
Bio_sequence and 
Bio_molecule_structure have almost 
indentical attribute lists, should we 
generalize them into a supertype?

Bio_sequence
Bio_sequence_id INTEGER
Bio_molecule_id INTEGER(FK)
Sequence_source VARCHAR2 (200)
Source_db_sequence_ident VARCHAR2 (50)
Sequence_text CLOB

There is no “right” answer, but I 
wouldn’t. The supertype seems forced. 
Could use “Bio_molecule_structure”. 
Sequences are primary structure, 
three-dimensional structures are 
tertiary structure. But would we store 
secondary and quaternary structure 
data, too?

Bio_molecule_structure
Bio_structure_id INTEGER
Bio_molecule_id INTEGER(FK)
Structure_type_code CHAR (FK)
Structure_source VARCHAR2 (200)
Source_db_structure_ident VARCHAR2 (50)
Structure_text CLOB (O)

Also, there can actually be more than 
one biomolecule in a “structure”: this is 
not true of sequences.



Copyright Melanie Nelson 2006

More Detailed Storage of Biomolecule
Structure

Bio_molecule
Bio_molecule_id INTEGER
Bio_molecule_type_code CHAR (FK) Bio_molecule_structure

Bio_structure_id INTEGER (FK)
Bio_molecule_id INTEGER(FK)

Structure_type_code CHAR (FK)
Structure_source VARCHAR2 (200)
Source_db_structure_ident VARCHAR2 (50)
Structure_text CLOB (O)

Comment VARCHAR2 (2000)
Bio_structure_id INTEGER

Common structure types are:
•X-ray
•NMR
•Electron microscopy
•Computational model

Bio_structure



Copyright Melanie Nelson 2006

Respecting Scientific Culture

Some important aspects of scientific culture:
Need to track the source of data
Need to accommodate the “fuzziness” of biology

Databases that fail to respect these aspects 
will not be used



Copyright Melanie Nelson 2006

Tracking the Source of Data

Discussed in slides for week 3
Source is often provided by a peer-reviewed 
publication

Publication citation provides unequivocal link to the source
Common to simply provide a link to PubMed
Some sources are not in PubMed, and must be 
handled differently
Merely storing the PubMed identifier does not allow 
queries into the reference data



Copyright Melanie Nelson 2006

Handling “Fuzziness” in Biology

Recognize that there will be an exception to 
any biological classification scheme

Make schemes user-extensible using “lookup”
tables
Provide a comment field so that users can 
document the exceptions

Accommodate uncertainty in biological data



Copyright Melanie Nelson 2006

Accommodating Uncertainties

Uncertainty is associated with all scientific data
Imperfections in measurement techniques
Incomplete knowledge

Methods to handle uncertainty are chosen based 
on:

Type of uncertainty
Requirements of the scientists using the data

Ignoring uncertainty can corrupt your database
Scientific conclusions may be based on data in DB
Uncertainty in data will influence conclusions
If users can’t assess uncertainty of data, your database 
loses value



Copyright Melanie Nelson 2006

Types of Uncertainty

Uncertainty in quantitative data can be 
calculated

Store raw data, and calculate on the fly
Store data and calculated error (e.g., average and 
standard deviation)

Uncertainty in qualitative data is more difficult 
to handle

Some types of experiments are inherently less 
certain than others



Copyright Melanie Nelson 2006

Examples of Biological Data with 
Uncertainty

Protein-protein interactions
Large scale studies and individual studies have 
differing uncertainties

Biophysical measurements
Often include quantitative uncertainties

Protein function annotation
Large difference in uncertainty between 
experimental and computational annotations



Copyright Melanie Nelson 2006

Function Annotations: Example of the 
Need to Include Uncertainty

Protein sequence annotated as “sugar kinase”
based on experimental evidence

Direct comparison of 
protein 1 and protein 
3 reveals only 28% 
identity: not enough 
for confident 
annotation transfer

BLAST shows 45% 
identity, so second 
sequence is also 
annotated as a 
“sugar kinase”

BLAST shows 41% 
identity to second 
protein, so third 
sequence is also 
annotated as a 
“sugar kinase”

If a scientist assumes the annotations on 
protein 1 and protein 2 are equally certain, 
an incorrect conclusion may result.



Copyright Melanie Nelson 2006

Including Uncertainty on Annotations

The problem illustrated by the example is not 
caused by the first annotation transfer

The problem is caused by the fact that a 
scientist using the data does not know that 
the annotation on protein 2 is less certain 
than the annotation on protein 1

Solution is to include this uncertainty in the 
data presented to the user



Copyright Melanie Nelson 2006

Including Uncertainty on Annotations

Include it in the annotation text: annotate protein 2 
as “sugar kinase (by similarity)”

GenBank and other big sequence databases do this
Include information about the source of the 
annotation: classify annotation on protein 1 as 
“experimental” and annotationon protein 2 as 
“computational” or “derived”

Gene Ontology includes evidence classifications
Link annotation directly to the supporting data

May be appropriate for database for lab/company that is in 
the protein annotation business



Copyright Melanie Nelson 2006

Including Uncertainty on Annotations

Using the Classification Method:

Protein

Protein_id INTEGER

Protein_annotation
Protein_annotation_id INTEGER
Protein_id INTEGER (FK)
Protein_annotation VARCHAR2 (500)
Annotation_support_class_code CHAR (FK)
Comment VARCHAR2 (2000)

Annotation_support_class
Annotation_support_class_code CHAR
Annotation_support_class VARCHAR2 (200)
Annotation_support_class_desc VARCHAR2 (500)



Copyright Melanie Nelson 2006

Including Uncertainty on Annotations

Storing the Supporting Evidence:

Protein

Protein_id INTEGER

Protein_annotation
Protein_annotation_id INTEGER
Protein_id INTEGER (FK)
Protein_annotation VARCHAR2 (500)
Comment VARCHAR2 (2000)

Annotation_evidence
Annotation_evidence_id INTEGER

Protein_annotation_id INTEGER (FK)
Evidence_type_code CHAR (FK)
Evidence CLOB

Classifying the evidence type is a good idea 
even if you store the evidence: this supports 
queries to find only annotations with 
experimental evidence

In reality, this will probably be a link to a set of 
tables storing the evidence. Decision is made 
based on scope/requirements: do you need to 
query into the evidence or just present it?



Copyright Melanie Nelson 2006

Handling Complex Data Types

Two types of complex data types are 
common in biological databases

Data that can be broken into normalized tables, 
but is often used in a flat file format
Data that is truly complex, and cannot be broken 
into tables

Both are often left outside of the database or 
stored in a CLOB or BLOB field
However, there are different considerations in 
the handling of the two types



Copyright Melanie Nelson 2006

Flat File Formats in Biology

Nucleotide and protein sequence data
GenBank
SWISS-PROT
FASTA

Protein structure data
PDB

Gene expression data
MAGE-ML (not really a flat file, an XML format)



Copyright Melanie Nelson 2006

Handling Flat File Formatted Data

Decision to be made: parse into the database or 
store in file system and reference from the 
database?
Answer depends on:

Scope of the database
If data in the flat files is not in scope, it can be difficult to justify 
effort required to parse it into the database

Resources available for handling data
Flat file-based systems have fewer integrity constraints, can 
change with little notice, and often have exceptions.
Can lead to frequent revisions of the parsing software

Politics of your organization
Some bioinformaticists may prefer flat files because that is 
what all of their tools run on



Copyright Melanie Nelson 2006

Deciding Whether or Not to Parse

Advantages of parsing data into database 
tables

More thoroughly integrates data
Allows more complex queries on the data

Advantages of leaving data in flat files
Don’t have to handle inconsistencies and changes 
in flat files
Data is stored in the format required by many 
bioinformatics tools



Copyright Melanie Nelson 2006

Complex Data Types in Biology

Complex data types are the raw data for a variety of 
experiments

Images (Gene expression arrays, microscopy)
Spectra (NMR, mass spec.)
Electron density (X-ray crystallography, electron 
microscopy)

Complex data is usually further analyzed
The results of these analyses are often stored in 
databases
The raw data may be stored as a BLOB, or stored in 
the file system and referenced



Copyright Melanie Nelson 2006

Storing Data in Large Object Fields

Both flat files and complex data types can be stored 
in large object fields (LOBs) or in file system 
(database references path)
Disadvantages of storing data in LOBs

Often, data must also exist outside of DB for access by 
specialist programs

Storing data in two places can lead to inconsistencies
Disadvantages of storing data in the file system:

Data is outside of DBMS consistency controls
If data is changed, references from DB may no longer be 
appropriate or correct

Data can be moved, making DB references stale



Copyright Melanie Nelson 2006

Parting Words
Successful design of biological databases requires 
understanding of biology and database principles

Will not necessarily have both in same person
Work in teams, and respect the complexity of the field that is not 
your own

For most research-scale DBs, performance will be adequate 
without any tricks

Don’t fall into the trap of denormalizing because you’ve heard 
that normalized databases have performance issues
Denormalize only as a last resort

For many of the design issues, there is no “right answer”
Decisions often depend on requirements of the DB
Field is too young for consensus on best way to handle data
Don’t get “analysis paralysis”: take your best shot, and learn from 
how it works (or doesn’t!)


	Biological Database DesignWeek 5
	Physical Database Design
	Transforming ER Diagrams into Tables: General Rules
	Transforming ER Diagrams into Tables: Exceptions
	Transforming ER Diagrams into Tables: Exceptions
	Transforming ER Diagrams into Tables: Exceptions
	Denormalizing
	Biological Databases are Like Other Databases
	Unusual Aspects of Biological Databases
	Handling the “Largeness” of Biology
	Handling the “Largeness” of Biology
	Handling “Largeness” of Biology
	Examples of Scope Boundaries
	Example of Scope Boundaries
	Scope Boundaries in DB Desgin
	Scope Boundaries in DB Design
	Protein Function Out of Scope
	Protein Function on the Scope Boundary
	Protein Function on the Scope Boundary
	Protein Function In Scope
	Handling Evolving “Business Rules”
	Use of Generalization
	Example of Generalization
	Generalizing Biological Molecules
	Generalizing Biological Molecules
	Generalizing Biological Molecules
	Generalizing Biological Molecules
	Further Generalization
	Further Generalization
	Limits of Generalization
	More Detailed Storage of Biomolecule Structure
	Respecting Scientific Culture
	Tracking the Source of Data
	Handling “Fuzziness” in Biology
	Accommodating Uncertainties
	Types of Uncertainty
	Examples of Biological Data with Uncertainty
	Function Annotations: Example of the Need to Include Uncertainty
	Including Uncertainty on Annotations
	Including Uncertainty on Annotations
	Including Uncertainty on Annotations
	Including Uncertainty on Annotations
	Handling Complex Data Types
	Flat File Formats in Biology
	Handling Flat File Formatted Data
	Deciding Whether or Not to Parse
	Complex Data Types in Biology
	Storing Data in Large Object Fields
	Parting Words

