Biological Database Design Week 3

Spring '06 Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2006

Question and Answer

Discuss homework

Q & A on last two weeks' material

Sequence Data

- Bioinformatics has traditionally focused on handling sequence data
- Many sequence databases are not relational
 - Particularly old ones: implemented prior to good DBMS support for CLOBs
 - GenBank and Swiss-Prot: originally flat file DBs, now have some relational storage
 - SRS (Sequence Retrieval System)
 - Popular way to handle sequences
 - Flat file based
 - Originally developed at EMBL/EBI, commercialized by Lion, sold to BioWisdom, online SRS servers available at EBI and elsewhere

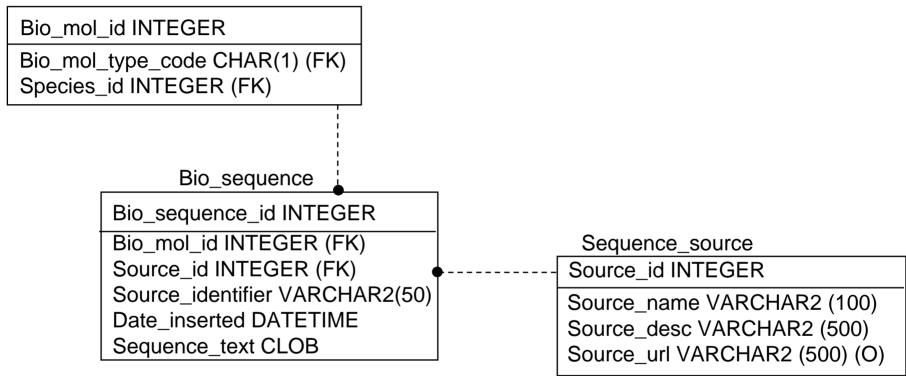
Sources of Sequence Data

- Public
 - NCBI
 - GenBank = all sequences
 - RefSeq = curated sequences
 - ExPASY
 - SWISS-PROT = highly curated protein sequences
 - TrEMBL = uncurated protein sequences (translated EMBL)
- Private
 - Incyte (out of the genomics business)
 - Celera (out of the sequencing business)
- Proprietary
 - In house sequencing efforts

Sequence Data

- A typical sequence "entry" contains:
 - Sequence text
 - Metadata
- Metadata is not uniform across sources
 - Will almost always have the species
 - Curated data sources will usually have:
 - Meaningful name ('Mitogen-Activated Protein Kinase')
 - Some indication of function
 - Uncurated data sources are often annotated by computer
 - Names often "similar to protein X" or "hypothetical protein"

Molecule to Sequence Relationship


- The same "protein" or "gene" can be represented by multiple sequence entries
- Different databases often have slightly different sequences
 - Start codon selection
 - Initiator methionine included or not
 - SNPs (single nucleotide polymorphisms)
 - Sequencing errors
 - Splice variants (a headache in their own right)

Molecule to Sequence Relationship

- Difficult to ascertain when two sequences are the "same" molecule
- Requires scientists to set appropriate rules for your database
 - □ I've used 90 95% identity over at least 50 residues
 - Exact cutoffs depend on need for accuracy vs. need for inclusiveness
- Some databases bypass the issue and treat each sequence individually
 - Potential for lots of data duplication
 - Decision is ultimately made based on database scope

Relational Implementation

Bio_molecule

Sequence Text

- Protein and nucleotide
 - Nucleotides translate to proteins at 3 base pairs per amino acid
 - DNA sequences contain introns: unexpressed DNA "inserted" into gene
- Large range in size of sequence text
 - □ Common to study ESTs (~300 500 base pairs)
 - Smallest proteins are ~50-200 amino acids
 - Largest protein is titin, which has ~27,000 amino acids
 - Genomic DNA can be millions of base pairs long

Searches on Sequence Text

Exact match

- Not very useful, because small variations can occur in sequences that are scientifically "the same"
- Used to remove (or flag) obvious redundancies
- Some uses in intellectual property
- Global match (e.g., ClustalW)
 - Finds optimal alignment over entire length of two sequences
 - Allows insertions and substitutions
 - Not good at identifying matching regions within sequences that also have unmatched regions

Searches on Sequence Text

- Local match (e.g., BLAST)
 - Most common method of searching sequence DBs
 - Looks for regions of alignment within two sequences
 - Allows insertions and substitutions
- Motif or domain searches
 - Look for regions of sequence that match known patterns
 - Used to infer function
 - Search for characteristic motifs (BLOCKS, PRINTS, PROSITE)
 - Search for domains (Pfam, SMART)
 - Allow insertions and substitutions

Sequence Searching in RDBs

- Can't perform searches on CLOBs in standard SQL
 RDBMS-specific availability of search features
- No easy way to implement the most useful types of searches in standard SQL
- Not all substitutions are equal
 - Some substitutions are more "conservative" than others
 - Preserve basic chemical properties of amino acid
 - Use a "substitution matrix such as BLOSSUM to specify "cost" of substitutions
 - Choice of substitution matrix may depend on personal preference, goals of project

Sequence Searching in RDBs

- Usually search on sequence text outside of relational database
- BLAST runs on a "database" of sequences in FASTA format
- Two options
 - Store sequences in database, but dump to FASTA for BLAST
 - Store sequences in FASTA flat files, reference these in database
 - Either way, DB and flat files can get out of sync
 - Storing sequences in database makes DB "gold standard"
- Oracle 10g implements BLAST searches in the database

Sequences as Non-Atomic Data

- In some databases, sequences are split into a table in which each amino acid or base pair is a row
- This is done when there is a need to store data about individual positions in the sequence
- Intermediate solutions: "break out" certain regions to store as individual residues
 - Functional motifs
 - Duplicates data

Sequence Metadata

- Metadata = data about data
 - Sequence is primary data
- Some metadata is a property of a particular sequence
 - Biophysical measurements: isoelectric point, extinction coefficients
- Some metadata is a property of the gene or protein that the sequence represents
 - Biological data: function, subcellular localization
- Species metadata can go either way
 - Depends on how you choose to handle orthologs in your database
 - Messiness of functional variation among orthologs means that a protein/gene is usually best associated with a single species

Sequence Species

- Species data is really a hierarchy
- For most applications, storing the full hierarchy is out of scope
 - Exceptions
 - Evolutionary biology
 - If need ability to perform deep searches on species (for "all mammals", etc.)
- Usually need at least scientific name and one common name
 - Some people will also provide basic classifications: specifics depend on scope of DB
- Can link to/incorporate NCBI's taxonomy DB
 - www.ncbi.nlm.nih.gov/Taxonomy

Sequence Function

Two types of function (at least!)

- Biochemical
 - The chemical process for which the protein/gene is responsible
 - Examples: kinase, calcium-binding
 - Enzymes: cross-reference EC (Enzyme commission) numbers (ENZYME: <u>http://www.expasy.org/enzyme/</u>)
 - Non-enzymes and enzymes: cross-reference molecular function Gene Ontology (<u>http://www.geneontology.org</u>)
- Cellular/Process
 - The cellular pathway or process in which the protein/gene participates
 - Examples: DNA repair, long term potentiation
 - Cross-reference biological process Gene Ontology

Sequence Function

- Link to disease states may be considered a type of function, too
 - ICD codes (<u>http://www.who.int/classifications/icd/en/</u>)
- One gene or protein may be involved in multiple biochemical and cellular functions
 - Many enzymes have multiple binding sites
 - Many signal transduction proteins participate in multiple pathways
- There are always exceptions to standard ontologies
- If a scientist's favorite gene doesn't fit the standard ontology, and he can't explain why, he won't store the data!
 - Always provide a comment field

Additional Metadata

- Too numerous to list
 - Chromosome
 - Ligand binding sites
 - Intron locations
 - Active site residues
- Highly dependent on interests of group using database
- Often difficult to classify
- Constantly expanding list
- Some text, some numeric

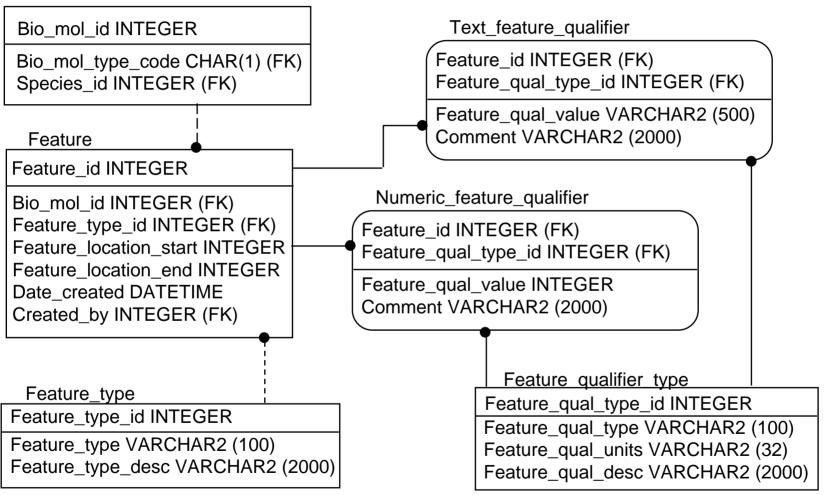
Metadata Issues

- Due to incomplete nature of biological research, the features that are available vary widely by molecule
 - If you try to make a table with a column for each feature, you will have a lot of NULLs
 - Alternatively, making each feature its own table leads to an explosion of tables in your schema

Additional Metadata

Most public databases handle additional metadata as "feature table"

GenBank/EMBL feature table


- Each feature has a location (optional: without location, feature is assumed to apply to entire sequence)
- Features have "keys" (identifying names)
- Features can have qualifiers (in GenBank spec, some are mandatory)
- Example: primer-binding site feature
 - □ Key = primer_bind
 - Optional qualifiers: allele, citation, db_xref, evidence, gene, label, locus_tag, map, note, standard_name, PCR_conditions
- Swiss-Prot has similar feature design
 - Comments apply to entire sequence
 - □ Examples: function, tissue specificity
 - Features are assigned a location
 - □ Examples: domain, binding site, post-translationally modified residue

Entity-Attribute-Value Design

- Standard design pattern used in many fields
- Values in table specifiy the feature, feature qualifier, and feature value
- If database needs to store features that apply only to regions of the sequence, add a "location" column
 - Requires separate tables for feature and qualifier, to avoid duplicating location
- Consider making feature type and feature qualifier lookup tables
 - Prevents duplicate names for same feature
- Store text and numeric features separately
 - Preserve ability to use numeric aggregate functions
 - Store units of numeric features

Relational Implementation

Bio_molecule

Difficulty Classifying Biological Data

- Biology is often a very "fuzzy" science
- Data is incomplete: scientists are constantly forming and discarding hypotheses
- Nature has a seemingly infinite way of combining features
- Dilemma
 - "Fuzziness" is real and important
 - Need "hard" classifications to support truly deep queries
 - Compromise
 - Make classification system user-extensible
 - Provide comment fields into which all of the real ambiguity can be entered

- It is often desirable to track the source of features
 - Particularly if features may be entered by users (rather than downloaded from source databases only)
 - Also desirable because different source databases may provide contradictory metadata
- Lack of "feature source" tracking has created a problem with function annotations in public databases
 - Sequence A is annotated as a kinase because of sequence similarity with Sequence B
 - Sequence B turns out not to be a kinase
 - More likely: Sequence A has same basic structure as Sequence B, but lacks kinase function
 - Sequence C is annotated as a kinase because of similarity to Sequence A
 - If none of the "function transfers" are traceable, the function annotations cannot be trusted

- In science, it is important to be able to lookup and evaluate source reference
- Science is incomplete
 - Your research contradicts the data in the database
 - Which is in error? Are both right, and we don't see the full picture yet?
 - Scientist needs to return to original source and evaluate the experiment

- Gold standard is publication in peer reviewed journal
- Usually, but not always, indexed in PubMed (<u>www.ncbi.nlm.nih.gov/PubMed</u>)
- Other sources
 - Chemistry journals
 - Dissertations (rarely read, let alone cited...)
 - Webpages
 - Internal company reports

- Reference data is actually quite complex
- In many applications, it is enough to link to PubMed
 - I usually provide ability to create internal, non-structured reference object for things not indexed in PubMed
- If need to allow queries into references, must store the reference itself
 - Find all features supported by papers on which Joe Q.
 Scientist is an author
- NCBI allows downloading of an XML version of reference, which is easy to parse into your database
- Object Management Group Bibliographic Query Service (OMG-BQS) model
 - http://www.ebi.ac.uk/~senger/openbqs
 - The class diagram is in the specification section
 - Moves frequently. Google "OpenBQS" to find it.

Sequence Versioning

- Some public databases now version their sequences
 - Example: RefSeq
 - Sequence is identified by an accession number and a version
 - NM_005842.2
 - In general, only latest version of sequence is available
- Must decide how to handle versioning in your database
 - Keep all versions or latest version only?
 - If you keep all versions, do you associate different versions of the same sequence with each other?
 - What happens to any metadata added to the sequence when a new version comes out?

Questions to Ask

- Is your primary interest the sequences or the proteins/genes they represent? (Or both?)
 Tells you whether you can simplify one or the other
- Do you need to search over "aggregate" species designations?
 - Tells you how much of the species hierarchy you need to store
- Do you need to search on details of supporting data, or just link to it?
 - Tells you whether you need to store all reference data, or just a link to it
- Do you need to associate data with a particular version of a sequence?
 - Tells you whether you need to track versions

Additional Data Models

ENSEMBL data model

- Relational database for ENSEMBL
- Used to be available: can no longer find it on the Ensembl website.
- bioSQL
 - http://obda.open-bio.org
 - From the Open Bioinformatics Foundation (open-bio.org)
- aMAZE
 - Interesting data model for representing function
 - http://www.amaze.ulb.ac.be
 - Representing and analysing molecular and cellular function using the computer. J. van Helden, et. al. (2000) Biol. Chem. 381:921-935.

Homework

- Reading for this week's class
 - GenBank portion of the NCBI handbook, UniProt user manual (on website)
- Homework: Project plans are due next week
- Reading for next week's class
 - Paper discussing GeneLogic's approach to managing gene expression data
 - Implementing LIMS: A "How To" Guide

Optional reading for next week's class

- Nature Genetics paper on MIAME (strongly recommended, but will require a trip to the library)
- A computer scientist's explanation of microarrays (strongly recommended for those not familiar with the technique)
- MAGE-ML paper