Biological Database Design
Week 3

Winter '05
Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2005

Question and Answer

Discuss homework
Q & A on last two weeks’ material

Copyright Melanie Nelson 2005

Introduction to SQL

SQL = Structured Query Language

o EXxcept that the spec says SQL doesn’t stand for anything
Standard language for accessing data in relational
databases

A nonprocedural language

o Say what you want, not how to get it

o A RDBMS has a query optimizer that figures out how to get
the data

RDBMS purists point out that it is not fully compliant
with relational database theory

o Poor support of domains

o Allows tables without keys

Copyright Melanie Nelson 2005

Introduction to SQL

Data Definition Language (DDL)
o0 CREATE TABLE, DROP TABLE

0 CREATE INDEX

o Constraints: UNIQUE, PRIMARY KEY, FOREIGN
KEY, NOT NULL

Data Manipulation Language (DML)
o INSERT, UPDATE, DELETE

a0 SELECT
o UNION, INTERSECT, EXCEPT

Copyright Melanie Nelson 2005

Example Tables

Bio molecule sequence
zf Bio_mol_id INTEGER (FK) O

Source _database VARCHAR?2 (32)
Date_inserted DATETIME
Seg_text CLOB

Bio_molecule /

Bio_mol_id INTEGER

Species VARCHAR2 (100)
Bio_mol_type code CHAR (1) (FK)
Function_desc VARCHAR?2 (2000) (O)

Bio_molecule _name

. : ™
Bio molecule type B!o_mol_ld INTEGER (FK)
_ Bio_mol _name VARCHAR?2 (500)
Bio_mol type code CHAR (1) _
Bio_mol_type VARCHAR?2 (32) kPrlmary_name CHAR (1))
Bio_mol_desc VARCHAR2 (500)

Copyright Melanie Nelson 2005

CREATE TABLE

Use to create a table

tablel
(columnl datatype ,
column?2 datatype)

Each table should have a primary key
constraint on one or more columns

Use to enforce alternate keys

Copyright Melanie Nelson 2005

CREATE TABLE

Create a table to store biological molecules

CREATE TABLE Bio_molecule (
Bio_mol _id INTEGER PRIMARY KEY,

Species VARCHA
Bio_mol type cod

R2 (50) NOT NULL,
e CHAR (1) NOT NULL,

Function_desc VA

PRIMARY KEY is eq

RCHAR2 (2000)

uivalent to UNIQUE, NOT NULL

Copyright Melanie Nelson 2005

Other DDL Commands

ALTER TABLE

o Add/drop/modify a column of a table
o Not all DBMS support drop and modify

CREATE INDEX

o Create an index on a column or combination of
columns

o Implementation detall: indexes are used by DBMS
to enforce constraints and optimize lookup

o UNIQUE constraints automatically create index
DROP TABLE, DROP INDEX

Copyright Melanie Nelson 2005

INSERT

Use INSERT to get data into a table
tablel (column list)
(value list)

Column list is optional, but should specify it If
the statement Is Iincluded in application code

0 Remember, the columns in a table are not in any
particular order!

Copyright Melanie Nelson 2005

INSERT

Insert the name “PTP1B” for biological
molecule #1456. It Is a primary name.

INSERT INTO Bio _molecule name
(Bio_mol _id, Bio_mol name, Primary_name)
VALUES (1456, ‘PTP1B’, Y’)

Text Is surrounded by single guotes.

Copyright Melanie Nelson 2005

UPDATE

Use to alter data in a table
tablel
columnl = new value,
column2 = new value
column3 = condition

WHERE clause Is optional. Without it, the
UPDATE will apply to all rows in the table

Copyright Melanie Nelson 2005

UPDATE

Change calmodulin to be the primary name.

UPDATE Bio_molecule _name

SET Primary _name =Y’
WHERE Bio_mol name = ‘calmodulin’
AND Bio mol _id = 456

Bio_mol_id portion of where clause is probably
unnecessary.

Copyright Melanie Nelson 2005

DELETE

Removes row(s) from table
tablel
columnl = condition

WHERE clause is optional. Without It,
DELETE will remove all rows from the table.

2 Won't remove table
o To do this, use DROP TABLE

Copyright Melanie Nelson 2005

DELETE

Delete all Incyte sequence data

DELETE FROM Bio_molecule sequence
WHERE Source database = ‘INCYTE’

Copyright Melanie Nelson 2005

SELECT

Use to get information out of tables
columnl, column2
tablel
column3 = condition

WHERE clause Is optional. Without it, the
statement returns all rows In the table

Copyright Melanie Nelson 2005

SELECT

List the primary name and bio_mol_id for all
molecules:
0 SELECT Bio_mol _id, Bio_mol _name
FROM Bio _molecule name
WHERE Primary _name ="‘Y’

List all biological molecules stored in the
database:
a0 SELECT *

FROM Bio_molecule

Copyright Melanie Nelson 2005

SELECT DISTINCT

Use to get a list of distinct values
(columnl, column?2)
tablel

Can have one or more columns in the select
statement

Multiple columns will provide distinct
combinations of values of those columns

Copyright Melanie Nelson 2005

SELECT DISTINCT

Find out what types of biological molecules are
represented in the Bio_molecule table:

SELECT DISTINCT Bio_mol _type code
FROM Bio_molecule

Copyright Melanie Nelson 2005

JOIN

Joins are used to combine information from multiple
tables

Two types of syntax

tablel.columnl, table2.column2
tablel, table2
tablel.column3 = table2.column3

tablel.columnl, table2.column2
tablel
table 2 (tablel.column3 = table2.column3)

Copyright Melanie Nelson 2005

JOIN

Show the biomolecule type, rather than the code,
for all types represented in Bio_molecule:

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm,
Bio_molecule type bmt
WHERE bm.Bio_mol type code = bmt.Bio_mol type code

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm
JOIN Bio_molecule type bmt
ON bm.Bio_mole type code = bmt.Bio_mol type code

Copyright Melanie Nelson 2005

LIKE and Wildcards

Wildcards are ‘%’ and *
0 ‘%’ = any number of characters

o '’ = exactly one character

Used with keyword LIKE

Select information on all biomolecules with

the word “kinase” in one of their names
o SELECT bm.Bio_mol id, Bio_mol name, Species
FROM Bio_molecule bm,
Bio_molecule_name bmn
WHERE bm.Bio_mol id = bmn.Bio_mol id
AND Bio_mol_name LIKE ‘%kinase%’

Contents of strings are case-sensitive

Copyright Melanie Nelson 2005

ORDER BY

ORDER BY returns rows In order

List the names assigned to Biomolecule #478
In alphabetical order:
a0 SELECT bio_mol name
FROM bio_molecule _name
WHERE bio_ mol 1d =478
ORDER BY bio_mol name ASC
ASC or DESC

Copyright Melanie Nelson 2005

Aggregate Functions

COUNT
o Count number of sequences from RefSeq DB
a0 SELECT COUNT (*)

FROM Bio_molecule sequence
WHERE Source database = ‘RefSeq’

GROUP BY

o Count number of sequences from each DB
0 SELECT Source database, COUNT (%)
FROM Bio_molecule sequence
GROUP BY Source database

Copyright Melanie Nelson 2005

Aggregate Functions

MAX and MIN
0 SELECT MAX(Date_inserted)
FROM Bio_molecule sequence
a2 Can be used on numeric and date fields

SUM
AVG

Copyright Melanie Nelson 2005

String Functions

DBMS specific implementations

Usually have at least:

0 Substrings
o Length

Copyright Melanie Nelson 2005

Subqueries

Can nest SQL statements:
o Select all primary names for human proteins:
SELECT Bio_mol _name
FROM Bio_molecule _name
WHERE Bio_mol _id IN (
SELECT Bio_mol _id
FROM Bio_molecule
WHERE Species = ‘Homo sapiens’
AND Bio_mol type code = ‘P’
)

Copyright Melanie Nelson 2005

Subqueries

EXISTS
o Another way to express subsets
SELECT Bio_mol _name
FROM Bio_molecule_name bmn
WHERE EXISTS (
SELECT *
FROM Bio_molecule bm
WHERE Species = ‘Homo sapiens’
AND Bio_mol _type_ code = ‘P’
AND bm.Bio_mol id = bmn.Bio_mol id

Copyright Melanie Nelson 2005

Subqueries

Can also use NOT IN and NOT EXIS

S

Choice between using JOIN, IN, or EXISTS Is

a performance tuning issue

Optimizer will usually “convert” for you, but
sometimes it pays to optimize, or “tune” the

guery yourself
For more detalls:

o SQL Performance Tuning, by P. Gulutzan and T.

Pelzer

Copyright Melanie Nelson 2005

Subqueries

Can join back to the same table

Show the primary name for all biomolecules for
which there are no other names:
SELECT Bio_mol _name
FROM Bio _molecule _name bmnl
WHERE Primary =Y’
AND NOT EXISTS (
SELECT *
FROM Bio _molecule name bmn2

WHERE Primary <> 'Y’
AND bmn2.Bio_mol id = bmnl.Bio_mol id

Copyright Melanie Nelson 2005

CLOBs

= Character Large Object
Implementation is very DBMS specific

Usually do not have access to many
functions

o No substring or length functions

o Can’t use in WHERE clause

o Can even be difficult to load in and select out

Copyright Melanie Nelson 2005

Sequence Data

Bioinformatics has traditionally focused on
handling sequence data

Many sequence databases are not relational

o Particularly old ones: implemented prior to good
DBMS support for CLOBs

o GenBank and Swiss-Prot: originally flat file DBs,
now have some relational storage

o Lion’s SRS (Sequence Retrieval System)
Popular way to handle sequences
Flat file based

Copyright Melanie Nelson 2005

Sources of Sequence Data

Public

o NCBI

GenBank = all sequences
RefSeq = curated sequences

o EXPASY

SWISS-PROT = highly curated protein sequences
TrEMBL = uncurated protein sequences (translated EMBL)

Private

o Incyte (out of the genomics business)
o Celera

Proprietary
o In house seqguencing efforts

Copyright Melanie Nelson 2005

Sequence Data

A typical sequence “entry” contains:
0 Sequence text
o Metadata

Metadata I1s not uniform across sources
o Wil almost always have the species

o Curated data sources will usually have
Meaningful name (‘Mitogen-Activated Protein Kinase’)
Some indication of function

o Uncurated data sources are often annotated by
computer

Names often “similar to protein X” or “hypothetical
protein”

Copyright Melanie Nelson 2005

Molecule to Sequence Relationship

The same “protein” or “gene” can be
represented by multiple sequence entries

Different databases often have slightly
different sequences

0 Start codon selection

Initiator methionine included or not

SNPs (single nucleotide polymorphisms)
Sequencing errors

Splice variants (a headache in their own right)

Copyright Melanie Nelson 2005

Molecule to Sequence Relationship

Difficult to ascertain when two sequences are the
“same” molecule

Requires scientists to set appropriate rules for your

database

o I've used 90 — 95% identity over at least 50 residues

o Exact cutoffs depend on need for accuracy vs. need for
Inclusiveness

Some databases bypass the issue and treat each

sequence individually

o Potential for lots of data duplication

o Decision is ultimately made based on database scope

Copyright Melanie Nelson 2005

Relational Implementation

Bio_molecule

Bio_mol_id INTEGER

Bio_mol _type code CHAR(1) (FK)
Species_id INTEGER (FK)

._________

Bio_sequence

Bio_sequence _id INTEGER
Bio_mol_id INTEGER (FK)

Sequence_source

Source_id INTEGER (FK) L

Source_id INTEGER

Source_identifier VARCHARZ2(50)
Date_inserted DATETIME
Sequence text CLOB

Source_name VARCHAR2 (100)
Source_desc VARCHAR2 (500)
Source_url VARCHAR2 (500) (O)

Copyright Melanie Nelson 2005

Sequence Text

Protein and nucleotide

2 Nucleotides translate to proteins at 3 base pairs
per amino acid

0 DNA sequences contain introns: unexpressed
DNA “Inserted” into gene

Large range Iin size of sequence text
o Common to study ESTs (=300 — 500 base pairs)
0 Smallest proteins are ~50-200 amino acids

o Largest protein is titin, which has ~27,000 amino
acids

0 Genomic DNA can be millions of base pairs long

Copyright Melanie Nelson 2005

Searches on Sequence Text

Exact match

o Not very useful, because small variations can occur in
sequences that are scientifically “the same”

o Used to remove (or flag) obvious redundancies
o Some uses in intellectual property

Global match (e.g., Clustalw)

o Finds optimal alignment over entire length of two
sequences

o Allows insertions and substitutions

o Not good at identifying matching regions within sequences
that also have unmatched regions

Copyright Melanie Nelson 2005

Searches on Sequence Text

Local match (e.g., BLAST)

g

g

Most common method of searching sequence DBs
Looks for regions of alignment within two sequences

o Allows insertions and substitutions
Motif or domain searches

Qg

Qg

Qg

Look for regions of sequence that match known patterns

Used to infer function

Search for characteristic motifs (BLOCKS, PRINTS,
PROSITE)

Search for domains (Pfam, SMART)
Allow Insertions and substitutions

Copyright Melanie Nelson 2005

Sequence Searching in RDBs

Can’t perform searches on CLOBs

No easy way to implement the most useful
types of searches in standard SQL

Not all substitutions are equal

o Some substitutions are more “conservative” than
others

o Preserve basic chemical properties of amino acid

0 Use a “substitution matrix such as BLOSSUM to
specify “cost” of substitutions

0 Choice of substitution matrix may depend on
personal preference, goals of project

Copyright Melanie Nelson 2005

Sequence Searching in RDBs

Usually search on sequence text outside of
relational database

BLAST runs on a “database” of sequences in
FASTA format

Two options

o Store sequences in database, but dump to FASTA for
BLAST

o Store sequences in FASTA flat files, reference these in
database

o Either way, DB and flat files can get out of sync
o Storing sequences in database makes DB “gold standard”

Oracle 10g implements BLAST searches in the
database

Copyright Melanie Nelson 2005

Sequences as Non-Atomic Data

In some databases, sequences are split into
a table in which each amino acid or base pair
IS a row

This Is done when there Is a need to store
data about individual positions in the
seguence

Intermediate solutions: “break out” certain
regions to store as individual residues

o Functional motifs
o Duplicates data

Copyright Melanie Nelson 2005

Sequence Metadata

Metadata = data about data
0 Sequence is primary data

Some metadata Is a property of a particular

seguence

o Biophysical measurements: isoelectric point, extinction
coefficents

Some metadata is a property of the gene or protein

that the sequence represents

o Biological data: function, subcellular localization

Species metadata can go either way

o Depends on how you choose to handle orthologs in your
database

o Messiness of functional variation among orthologs means
that a protein/gene is usually best associated with a single
species

Copyright Melanie Nelson 2005

Sequence Species

Species data Is really a hierarchy

For most applications, storing the full hierarchy is
out of scope

o Exceptions
Evolutionary biology

If need ability to perform deep searches on species (for “all
mammals”, etc.)

Usually need at least scientific name and one
common hame

o Some people will also provide basic classifications:
specifics depend on scope of DB

Can link to/incorporate NCBI's taxonomy DB
o www.ncbi.nlm.nih.gov/Taxonomy

Copyright Melanie Nelson 2005

Sequence Function

Two types of function (at least!)
o Biochemical

The chemical process for which the protein/gene is
responsible

Examples: kinase, calcium-binding
Enzymes: cross-reference EC (Enzyme commission) numbers

(ENZYME:)
Non-enzymes and enzymes: cross-reference molecular
function Gene Ontology www.geneontology.org)

o Cellular/Process

The cellular pathway or process in which the protein/gene
participates

Examples: DNA repair, long term potentiation
Cross-reference biological process Gene Ontology

Copyright Melanie Nelson 2005

Sequence Function

Link to disease states may be considered a type of
function, too

o ICD codes ()
One gene or protein may be involved in multiple
biochemical and cellular functions

o Many enzymes have multiple binding sites

o Many signal transduction proteins participate in multiple
pathways

There are always exceptions to standard ontologies

If a scientist’s favorite gene doesn't fit the standard
ontology, and he can’t explain why, he won'’t store
the data!

o Always provide a comment field

Copyright Melanie Nelson 2005

Additional Metadata

Too numerous to list
o Chromosome

o Ligand binding sites
a Intron locations

a Active site residues

Highly dependent on interests of group using
database

Often difficult to classify
Constantly expanding list
Some text, some numeric

Copyright Melanie Nelson 2005

Metadata Issues

Due to incomplete nature of biological
research, the features that are available vary
widely by molecule

o If you try to make a table with a column for each
feature, you will have a lot of NULLs

o Alternatively, making each feature its own table
leads to an explosion of tables in your schema

Copyright Melanie Nelson 2005

Additional Metadata

Most public databases handle additional metadata as
“feature table”

o GenBank/EMBL feature table

Each feature has a location (optional: without location, feature is
assumed to apply to entire sequence)

Features have “keys” (identifying names)

Features can have qualifiers (in GenBank spec, some are
mandatory)

Example: primer-binding site feature
0 Key = primer_bind

0 Optional qualifiers: allele, citation, db_xref, evidence, gene, label,
locus_tag, map, note, standard name, PCR condltlons

o Swiss-Prot has similar feature design

Comments apply to entire sequence

0 Examples: function, tissue specificity

Features are assigned a location

0 Examples: domain, binding site, post-translationally modified residue

Copyright Melanie Nelson 2005

Entity-Attribute-Value Design

Standard design pattern used in many fields

Values in table specifiy the feature, feature qualifier,
and feature value

If database needs to store features that apply only
to regions of the sequence, add a “location” column

o Requires separate tables for feature and qualifier, to avoid
duplicating location

Consider making feature type and feature qualifier
lookup tables

o Prevents duplicate names for same feature

Store text and numeric features separately
o Preserve ablility to use numeric aggregate functions
o Store units of numeric features

Copyright Melanie Nelson 2005

Relational Implementation

Bio_molecule

Bio_mol_id INTEGER

Bio_mol_type code CHAR(1) (FK)
Species_id INTEGER (FK)

Feature ‘

Text_feature qualifier

Feature id INTEGER (FK)
Feature qual type id INTEGER (FK)

Feature qual value VARCHAR2 (500)
Comment VARCHAR?2 (2000) ./

~

Feature id INTEGER

Bio_mol_id INTEGER (FK)

Feature location_end INTEGER
Date_created DATETIME
Created_by INTEGER (FK)

Feature_type_id INTEGER (FK) Feature_id INTEGER (FK))
Feature_location_start INTEGER | Feature_qual_type_id INTEGER (FK)

¢

Feature type

Numeric_feature_qualifier

Feature type id INTEGER

Feature type VARCHAR?2 (100)

Feature type desc VARCHAR2 (2000)

Feature qual value INTEGER
Comment VARCHAR2 (2000)

J

I Feature qualifier type

Feature qual type_id INTEGER

Feature qual_type VARCHAR2 (100)
Feature qual_units VARCHAR2 (32)
Feature qual _desc VARCHAR2 (2000)

Copyright Melanie Nelson 2005

Difficulty Classifying Biological Data

Biology Is often a very “fuzzy” science

Data Is iIncomplete: scientists are constantly forming
and discarding hypotheses

Nature has a seemingly infinite way of combining
features

Dilemma
o “Fuzziness” iIs real and important
o Need “hard” classifications to support truly deep queries

o Compromise
Make classification system user-extensible

Provide comment fields into which all of the real ambiguity can
be entered

Copyright Melanie Nelson 2005

Tracking the Source of Data

It IS often desirable to track the source of features

o Particularly if features may be entered by users (rather than
downloaded from source databases only)

o Also desirable because different source databases may provide
contradictory metadata

Lack of “feature source” tracking has created a problem with
function annotations in public databases
o Seqguence A is annotated as a kinase because of sequence
similarity with Sequence B
Seqguence B turns out not to be a kinase

More likely: Sequence A has same basic structure as Sequence B,
but lacks kinase function

o Sequence C is annotated as a kinase because of similarity to
Sequence A

o If none of the “function transfers” are traceable, the function
annotations cannot be trusted

Copyright Melanie Nelson 2005

Tracking the Source of Data

In science, It Is Important to be able to lookup
and evaluate source reference

Science Is incomplete

o Your research contradicts the data in the
database

o Which is in error? Are both right, and we don'’t see
the full picture yet?

0 Sclentist needs to return to original source and
evaluate the experiment

Copyright Melanie Nelson 2005

Tracking the Source of Data

Gold standard is publication in peer reviewed
journal

Usually, but not always, indexed in PubMed
(www.ncbhi.nlm.nih.gov/PubMed)

Other sources

o Chemistry journals

o Dissertations (rarely read, let alone cited...)
2 Webpages

o Internal company reports

Copyright Melanie Nelson 2005

Tracking the Source of Data

Reference data is actually quite complex

In many applications, it is enough to link to PubMed

o | usually provide ability to create internal, non-structured
reference object for things not indexed in PubMed

If need to allow queries into references, must store the
reference itself

o Find all features supported by papers on which Joe Q.
Scientist is an author

NCBI allows downloading of an XML version of
reference, which is easy to parse into your database

Object Management Group Bibliographic Query Service
(OMG-BQS) model

a
o class diagram is in the specification section

Copyright Melanie Nelson 2005

Sequence Versioning

Some public databases now version their
seqguences
o Example: RefSeq

o Sequence is identified by an accession number and a
version

NM_005842.2
o In general, only latest version of sequence is available

Must decide how to handle versioning in your
database
o Keep all versions or latest version only?

o If you keep all versions, do you associate different versions
of the same sequence with each other?

o What happens to any metadata added to the sequence
when a new version comes out?

Copyright Melanie Nelson 2005

Questions to Ask

Is your primary interest the sequences or the
proteins/genes they represent? (Or both?)

o Tells you whether you can simplify one or the other
Do you need to search over “aggregate” species
designations?

o Tells you how much of the species hierarchy you need to
store

Do you need to search on detalls of supporting data,
or just link to it?

o Tells you whether you need to store all reference data, or
just a link to it

Do you need to associate data with a particular
version of a sequence?

o Tells you whether you need to track versions

Copyright Melanie Nelson 2005

Additional Data Models

ENSEMBL data model
o Relational database for ENSEMBL

a

biIoSQL

Q

o From the Open Bioinformatics Foundation (open-bio.org)

aMAZE
o Interesting data model for representing function
a

o Representing and analysing molecular and cellular function
using the computer. J. van Helden, et. al. (2000) Biol.
Chem. 381:921-935.

Copyright Melanie Nelson 2005

Homework

Reading for this week’s class

o GenBank portion of the NCBI handbook, UniProt user manual (on
website)

Homework: Project plans are due next week

Reading for next week’s class

o Paper discussing GenelLogic’s approach to managing gene expression
data

o Implementing LIMS: A “How To” Guide
Optional reading for next week’s class

o Nature Genetics paper on MIAME (strongly recommended, but will
require a trip to the library)

o A computer scientist’s explanation of microarrays (strongly
recommended for those not familiar with the technique)

o MAGE-ML paper

Copyright Melanie Nelson 2005

