
Copyright Melanie Nelson 2005

Biological Database Design
Week 3

Winter ’05
Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2005

Question and Answer

Discuss homework
Q & A on last two weeks’ material

Copyright Melanie Nelson 2005

Introduction to SQL

SQL = Structured Query Language
Except that the spec says SQL doesn’t stand for anything

Standard language for accessing data in relational
databases
A nonprocedural language

Say what you want, not how to get it
A RDBMS has a query optimizer that figures out how to get
the data

RDBMS purists point out that it is not fully compliant
with relational database theory

Poor support of domains
Allows tables without keys

Copyright Melanie Nelson 2005

Introduction to SQL

Data Definition Language (DDL)
CREATE TABLE, DROP TABLE
CREATE INDEX
Constraints: UNIQUE, PRIMARY KEY, FOREIGN
KEY, NOT NULL

Data Manipulation Language (DML)
INSERT, UPDATE, DELETE
SELECT
UNION, INTERSECT, EXCEPT

Copyright Melanie Nelson 2005

Example Tables

Bio_molecule
Bio_mol_id INTEGER

Species VARCHAR2 (100)
Bio_mol_type_code CHAR (1) (FK)
Function_desc VARCHAR2 (2000) (O)

Bio_molecule_sequence
Bio_mol_id INTEGER (FK)
Source_database VARCHAR2 (32)
Date_inserted DATETIME
Seq_text CLOB

Z

Bio_molecule_name
Bio_mol_id INTEGER (FK)
Bio_mol_name VARCHAR2 (500)

Primary_name CHAR (1)

Bio_molecule_type
Bio_mol_type_code CHAR (1)
Bio_mol_type VARCHAR2 (32)
Bio_mol_desc VARCHAR2 (500)

Copyright Melanie Nelson 2005

CREATE TABLE

Use to create a table
CREATE TABLE table1
(column1 datatype PRIMARY KEY,
column2 datatype)

Each table should have a primary key
constraint on one or more columns
Use UNIQUE to enforce alternate keys

Copyright Melanie Nelson 2005

CREATE TABLE

Create a table to store biological molecules

CREATE TABLE Bio_molecule (
Bio_mol_id INTEGER PRIMARY KEY,
Species VARCHAR2 (50) NOT NULL,
Bio_mol_type_code CHAR (1) NOT NULL,
Function_desc VARCHAR2 (2000)

)

PRIMARY KEY is equivalent to UNIQUE, NOT NULL

Copyright Melanie Nelson 2005

Other DDL Commands

ALTER TABLE
Add/drop/modify a column of a table
Not all DBMS support drop and modify

CREATE INDEX
Create an index on a column or combination of
columns
Implementation detail: indexes are used by DBMS
to enforce constraints and optimize lookup
UNIQUE constraints automatically create index

DROP TABLE, DROP INDEX

Copyright Melanie Nelson 2005

INSERT

Use INSERT to get data into a table
INSERT INTO table1 (column list)
VALUES (value list)
Column list is optional, but should specify it if
the statement is included in application code

Remember, the columns in a table are not in any
particular order!

Copyright Melanie Nelson 2005

INSERT

Insert the name “PTP1B” for biological
molecule #1456. It is a primary name.

INSERT INTO Bio_molecule_name
(Bio_mol_id, Bio_mol_name, Primary_name)

VALUES (1456, ‘PTP1B’, ‘Y’)

Text is surrounded by single quotes.

Copyright Melanie Nelson 2005

UPDATE

Use to alter data in a table
UPDATE table1
SET column1 = new value,

column2 = new value
WHERE column3 = condition
WHERE clause is optional. Without it, the
UPDATE will apply to all rows in the table

Copyright Melanie Nelson 2005

UPDATE

Change calmodulin to be the primary name.

UPDATE Bio_molecule_name
SET Primary_name = ‘Y’
WHERE Bio_mol_name = ‘calmodulin’
AND Bio_mol_id = 456

Bio_mol_id portion of where clause is probably
unnecessary.

Copyright Melanie Nelson 2005

DELETE

Removes row(s) from table
DELETE FROM table1
WHERE column1 = condition
WHERE clause is optional. Without it,
DELETE will remove all rows from the table.

Won’t remove table
To do this, use DROP TABLE

Copyright Melanie Nelson 2005

DELETE

Delete all Incyte sequence data

DELETE FROM Bio_molecule_sequence
WHERE Source_database = ‘INCYTE’

Copyright Melanie Nelson 2005

SELECT

Use to get information out of tables
SELECT column1, column2
FROM table1
WHERE column3 = condition
WHERE clause is optional. Without it, the
statement returns all rows in the table

Copyright Melanie Nelson 2005

SELECT

List the primary name and bio_mol_id for all
molecules:

SELECT Bio_mol_id, Bio_mol_name
FROM Bio_molecule_name
WHERE Primary_name = ‘Y’

List all biological molecules stored in the
database:

SELECT *
FROM Bio_molecule

Copyright Melanie Nelson 2005

SELECT DISTINCT

Use to get a list of distinct values
SELECT DISTINCT (column1, column2)
FROM table1
Can have one or more columns in the select
statement
Multiple columns will provide distinct
combinations of values of those columns

Copyright Melanie Nelson 2005

SELECT DISTINCT

Find out what types of biological molecules are
represented in the Bio_molecule table:

SELECT DISTINCT Bio_mol_type_code
FROM Bio_molecule

Copyright Melanie Nelson 2005

JOIN

Joins are used to combine information from multiple
tables

Two types of syntax

SELECT table1.column1, table2.column2
FROM table1, table2
WHERE table1.column3 = table2.column3

SELECT table1.column1, table2.column2
FROM table1
JOIN table 2 ON (table1.column3 = table2.column3)

Copyright Melanie Nelson 2005

JOIN

Show the biomolecule type, rather than the code,
for all types represented in Bio_molecule:

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm,

Bio_molecule_type bmt
WHERE bm.Bio_mol_type_code = bmt.Bio_mol_type_code

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm
JOIN Bio_molecule_type bmt

ON bm.Bio_mole_type_code = bmt.Bio_mol_type_code

Copyright Melanie Nelson 2005

LIKE and Wildcards
Wildcards are ‘%’ and ‘_’

‘%’ = any number of characters
‘_’ = exactly one character

Used with keyword LIKE
Select information on all biomolecules with
the word “kinase” in one of their names

SELECT bm.Bio_mol_id, Bio_mol_name, Species
FROM Bio_molecule bm,

Bio_molecule_name bmn
WHERE bm.Bio_mol_id = bmn.Bio_mol_id
AND Bio_mol_name LIKE ‘%kinase%’

Contents of strings are case-sensitive

Copyright Melanie Nelson 2005

ORDER BY

ORDER BY returns rows in order
List the names assigned to Biomolecule #478
in alphabetical order:

SELECT bio_mol_name
FROM bio_molecule_name
WHERE bio_mol_id = 478
ORDER BY bio_mol_name ASC

ASC or DESC

Copyright Melanie Nelson 2005

Aggregate Functions

COUNT
Count number of sequences from RefSeq DB
SELECT COUNT (*)
FROM Bio_molecule_sequence
WHERE Source_database = ‘RefSeq’

GROUP BY
Count number of sequences from each DB
SELECT Source_database, COUNT (*)
FROM Bio_molecule_sequence
GROUP BY Source_database

Copyright Melanie Nelson 2005

Aggregate Functions

MAX and MIN
SELECT MAX(Date_inserted)
FROM Bio_molecule_sequence
Can be used on numeric and date fields

SUM
AVG

Copyright Melanie Nelson 2005

String Functions

DBMS specific implementations
Usually have at least:

Substrings
Length

Copyright Melanie Nelson 2005

Subqueries
Can nest SQL statements:

Select all primary names for human proteins:
SELECT Bio_mol_name
FROM Bio_molecule_name
WHERE Bio_mol_id IN (

SELECT Bio_mol_id
FROM Bio_molecule
WHERE Species = ‘Homo sapiens’
AND Bio_mol_type_code = ‘P’

)

Copyright Melanie Nelson 2005

Subqueries

EXISTS
Another way to express subsets
SELECT Bio_mol_name
FROM Bio_molecule_name bmn
WHERE EXISTS (

SELECT *
FROM Bio_molecule bm
WHERE Species = ‘Homo sapiens’
AND Bio_mol_type_code = ‘P’
AND bm.Bio_mol_id = bmn.Bio_mol_id

)

Copyright Melanie Nelson 2005

Subqueries

Can also use NOT IN and NOT EXISTS
Choice between using JOIN, IN, or EXISTS is
a performance tuning issue
Optimizer will usually “convert” for you, but
sometimes it pays to optimize, or “tune” the
query yourself
For more details:

SQL Performance Tuning, by P. Gulutzan and T.
Pelzer

Copyright Melanie Nelson 2005

Subqueries

Can join back to the same table
Show the primary name for all biomolecules for
which there are no other names:
SELECT Bio_mol_name
FROM Bio_molecule_name bmn1
WHERE Primary = ‘Y’
AND NOT EXISTS (

SELECT *
FROM Bio_molecule_name bmn2
WHERE Primary <> ‘Y’
AND bmn2.Bio_mol_id = bmn1.Bio_mol_id

)

Copyright Melanie Nelson 2005

CLOBs

CLOB = Character Large Object
Implementation is very DBMS specific
Usually do not have access to many
functions

No substring or length functions
Can’t use in WHERE clause
Can even be difficult to load in and select out

Copyright Melanie Nelson 2005

Sequence Data

Bioinformatics has traditionally focused on
handling sequence data
Many sequence databases are not relational

Particularly old ones: implemented prior to good
DBMS support for CLOBs
GenBank and Swiss-Prot: originally flat file DBs,
now have some relational storage
Lion’s SRS (Sequence Retrieval System)

Popular way to handle sequences
Flat file based

Copyright Melanie Nelson 2005

Sources of Sequence Data

Public
NCBI

GenBank = all sequences
RefSeq = curated sequences

ExPASY
SWISS-PROT = highly curated protein sequences
TrEMBL = uncurated protein sequences (translated EMBL)

Private
Incyte (out of the genomics business)
Celera

Proprietary
In house sequencing efforts

Copyright Melanie Nelson 2005

Sequence Data

A typical sequence “entry” contains:
Sequence text
Metadata

Metadata is not uniform across sources
Will almost always have the species
Curated data sources will usually have

Meaningful name (‘Mitogen-Activated Protein Kinase’)
Some indication of function

Uncurated data sources are often annotated by
computer

Names often “similar to protein X” or “hypothetical
protein”

Copyright Melanie Nelson 2005

Molecule to Sequence Relationship

The same “protein” or “gene” can be
represented by multiple sequence entries
Different databases often have slightly
different sequences

Start codon selection
Initiator methionine included or not
SNPs (single nucleotide polymorphisms)
Sequencing errors
Splice variants (a headache in their own right)

Copyright Melanie Nelson 2005

Molecule to Sequence Relationship

Difficult to ascertain when two sequences are the
“same” molecule
Requires scientists to set appropriate rules for your
database

I’ve used 90 – 95% identity over at least 50 residues
Exact cutoffs depend on need for accuracy vs. need for
inclusiveness

Some databases bypass the issue and treat each
sequence individually

Potential for lots of data duplication
Decision is ultimately made based on database scope

Copyright Melanie Nelson 2005

Relational Implementation
Bio_molecule

Bio_mol_id INTEGER
Bio_mol_type_code CHAR(1) (FK)
Species_id INTEGER (FK)

Bio_sequence
Bio_sequence_id INTEGER
Bio_mol_id INTEGER (FK)
Source_id INTEGER (FK)
Source_identifier VARCHAR2(50)
Date_inserted DATETIME
Sequence_text CLOB

Sequence_source
Source_id INTEGER
Source_name VARCHAR2 (100)
Source_desc VARCHAR2 (500)
Source_url VARCHAR2 (500) (O)

Copyright Melanie Nelson 2005

Sequence Text

Protein and nucleotide
Nucleotides translate to proteins at 3 base pairs
per amino acid
DNA sequences contain introns: unexpressed
DNA “inserted” into gene

Large range in size of sequence text
Common to study ESTs (~300 – 500 base pairs)
Smallest proteins are ~50-200 amino acids
Largest protein is titin, which has ~27,000 amino
acids
Genomic DNA can be millions of base pairs long

Copyright Melanie Nelson 2005

Searches on Sequence Text
Exact match

Not very useful, because small variations can occur in
sequences that are scientifically “the same”
Used to remove (or flag) obvious redundancies
Some uses in intellectual property

Global match (e.g., ClustalW)
Finds optimal alignment over entire length of two
sequences
Allows insertions and substitutions
Not good at identifying matching regions within sequences
that also have unmatched regions

Copyright Melanie Nelson 2005

Searches on Sequence Text

Local match (e.g., BLAST)
Most common method of searching sequence DBs
Looks for regions of alignment within two sequences
Allows insertions and substitutions

Motif or domain searches
Look for regions of sequence that match known patterns
Used to infer function
Search for characteristic motifs (BLOCKS, PRINTS,
PROSITE)
Search for domains (Pfam, SMART)
Allow insertions and substitutions

Copyright Melanie Nelson 2005

Sequence Searching in RDBs

Can’t perform searches on CLOBs
No easy way to implement the most useful
types of searches in standard SQL
Not all substitutions are equal

Some substitutions are more “conservative” than
others
Preserve basic chemical properties of amino acid
Use a “substitution matrix such as BLOSSUM to
specify “cost” of substitutions
Choice of substitution matrix may depend on
personal preference, goals of project

Copyright Melanie Nelson 2005

Sequence Searching in RDBs

Usually search on sequence text outside of
relational database
BLAST runs on a “database” of sequences in
FASTA format
Two options

Store sequences in database, but dump to FASTA for
BLAST
Store sequences in FASTA flat files, reference these in
database
Either way, DB and flat files can get out of sync
Storing sequences in database makes DB “gold standard”

Oracle 10g implements BLAST searches in the
database

Copyright Melanie Nelson 2005

Sequences as Non-Atomic Data

In some databases, sequences are split into
a table in which each amino acid or base pair
is a row
This is done when there is a need to store
data about individual positions in the
sequence
Intermediate solutions: “break out” certain
regions to store as individual residues

Functional motifs
Duplicates data

Copyright Melanie Nelson 2005

Sequence Metadata
Metadata = data about data

Sequence is primary data
Some metadata is a property of a particular
sequence

Biophysical measurements: isoelectric point, extinction
coefficents

Some metadata is a property of the gene or protein
that the sequence represents

Biological data: function, subcellular localization
Species metadata can go either way

Depends on how you choose to handle orthologs in your
database
Messiness of functional variation among orthologs means
that a protein/gene is usually best associated with a single
species

Copyright Melanie Nelson 2005

Sequence Species
Species data is really a hierarchy
For most applications, storing the full hierarchy is
out of scope

Exceptions
Evolutionary biology
If need ability to perform deep searches on species (for “all
mammals”, etc.)

Usually need at least scientific name and one
common name

Some people will also provide basic classifications:
specifics depend on scope of DB

Can link to/incorporate NCBI’s taxonomy DB
www.ncbi.nlm.nih.gov/Taxonomy

Copyright Melanie Nelson 2005

Sequence Function

Two types of function (at least!)
Biochemical

The chemical process for which the protein/gene is
responsible
Examples: kinase, calcium-binding
Enzymes: cross-reference EC (Enzyme commission) numbers
(ENZYME: http://www.expasy.org/enzyme/)
Non-enzymes and enzymes: cross-reference molecular
function Gene Ontology (http://www.geneontology.org)

Cellular/Process
The cellular pathway or process in which the protein/gene
participates
Examples: DNA repair, long term potentiation
Cross-reference biological process Gene Ontology

Copyright Melanie Nelson 2005

Sequence Function

Link to disease states may be considered a type of
function, too

ICD codes (http://www.who.int/classifications/icd/en/)
One gene or protein may be involved in multiple
biochemical and cellular functions

Many enzymes have multiple binding sites
Many signal transduction proteins participate in multiple
pathways

There are always exceptions to standard ontologies
If a scientist’s favorite gene doesn’t fit the standard
ontology, and he can’t explain why, he won’t store
the data!

Always provide a comment field

Copyright Melanie Nelson 2005

Additional Metadata

Too numerous to list
Chromosome
Ligand binding sites
Intron locations
Active site residues

Highly dependent on interests of group using
database
Often difficult to classify
Constantly expanding list
Some text, some numeric

Copyright Melanie Nelson 2005

Metadata Issues

Due to incomplete nature of biological
research, the features that are available vary
widely by molecule

If you try to make a table with a column for each
feature, you will have a lot of NULLs
Alternatively, making each feature its own table
leads to an explosion of tables in your schema

Copyright Melanie Nelson 2005

Additional Metadata
Most public databases handle additional metadata as
“feature table”

GenBank/EMBL feature table
Each feature has a location (optional: without location, feature is
assumed to apply to entire sequence)
Features have “keys” (identifying names)
Features can have qualifiers (in GenBank spec, some are
mandatory)
Example: primer-binding site feature

Key = primer_bind
Optional qualifiers: allele, citation, db_xref, evidence, gene, label,
locus_tag, map, note, standard_name, PCR_conditions

Swiss-Prot has similar feature design
Comments apply to entire sequence

Examples: function, tissue specificity
Features are assigned a location

Examples: domain, binding site, post-translationally modified residue

Copyright Melanie Nelson 2005

Entity-Attribute-Value Design
Standard design pattern used in many fields
Values in table specifiy the feature, feature qualifier,
and feature value
If database needs to store features that apply only
to regions of the sequence, add a “location” column

Requires separate tables for feature and qualifier, to avoid
duplicating location

Consider making feature type and feature qualifier
lookup tables

Prevents duplicate names for same feature
Store text and numeric features separately

Preserve ability to use numeric aggregate functions
Store units of numeric features

Copyright Melanie Nelson 2005

Relational Implementation
Bio_molecule

Bio_mol_id INTEGER

Bio_mol_type_code CHAR(1) (FK)
Species_id INTEGER (FK)

Feature
Feature_id INTEGER

Bio_mol_id INTEGER (FK)
Feature_type_id INTEGER (FK)
Feature_location_start INTEGER
Feature_location_end INTEGER
Date_created DATETIME
Created_by INTEGER (FK)

Text_feature_qualifier

Feature_id INTEGER (FK)
Feature_qual_type_id INTEGER (FK)

Feature_qual_value VARCHAR2 (500)
Comment VARCHAR2 (2000)

Numeric_feature_qualifier

Feature_id INTEGER (FK)
Feature_qual_type_id INTEGER (FK)

Feature_qual_value INTEGER
Comment VARCHAR2 (2000)

Feature_type
Feature_type_id INTEGER
Feature_type VARCHAR2 (100)
Feature_type_desc VARCHAR2 (2000)

Feature_qualifier_type
Feature_qual_type_id INTEGER
Feature_qual_type VARCHAR2 (100)
Feature_qual_units VARCHAR2 (32)
Feature_qual_desc VARCHAR2 (2000)

Copyright Melanie Nelson 2005

Difficulty Classifying Biological Data

Biology is often a very “fuzzy” science
Data is incomplete: scientists are constantly forming
and discarding hypotheses
Nature has a seemingly infinite way of combining
features
Dilemma

“Fuzziness” is real and important
Need “hard” classifications to support truly deep queries
Compromise

Make classification system user-extensible
Provide comment fields into which all of the real ambiguity can
be entered

Copyright Melanie Nelson 2005

Tracking the Source of Data
It is often desirable to track the source of features

Particularly if features may be entered by users (rather than
downloaded from source databases only)
Also desirable because different source databases may provide
contradictory metadata

Lack of “feature source” tracking has created a problem with
function annotations in public databases

Sequence A is annotated as a kinase because of sequence
similarity with Sequence B

Sequence B turns out not to be a kinase
More likely: Sequence A has same basic structure as Sequence B,
but lacks kinase function

Sequence C is annotated as a kinase because of similarity to
Sequence A
If none of the “function transfers” are traceable, the function
annotations cannot be trusted

Copyright Melanie Nelson 2005

Tracking the Source of Data

In science, it is important to be able to lookup
and evaluate source reference
Science is incomplete

Your research contradicts the data in the
database
Which is in error? Are both right, and we don’t see
the full picture yet?
Scientist needs to return to original source and
evaluate the experiment

Copyright Melanie Nelson 2005

Tracking the Source of Data

Gold standard is publication in peer reviewed
journal
Usually, but not always, indexed in PubMed
(www.ncbi.nlm.nih.gov/PubMed)
Other sources

Chemistry journals
Dissertations (rarely read, let alone cited…)
Webpages
Internal company reports

Copyright Melanie Nelson 2005

Tracking the Source of Data
Reference data is actually quite complex
In many applications, it is enough to link to PubMed

I usually provide ability to create internal, non-structured
reference object for things not indexed in PubMed

If need to allow queries into references, must store the
reference itself

Find all features supported by papers on which Joe Q.
Scientist is an author

NCBI allows downloading of an XML version of
reference, which is easy to parse into your database
Object Management Group Bibliographic Query Service
(OMG-BQS) model

http://industry.ebi.ac.uk/openBQS/
class diagram is in the specification section

Copyright Melanie Nelson 2005

Sequence Versioning

Some public databases now version their
sequences

Example: RefSeq
Sequence is identified by an accession number and a
version

NM_005842.2
In general, only latest version of sequence is available

Must decide how to handle versioning in your
database

Keep all versions or latest version only?
If you keep all versions, do you associate different versions
of the same sequence with each other?
What happens to any metadata added to the sequence
when a new version comes out?

Copyright Melanie Nelson 2005

Questions to Ask

Is your primary interest the sequences or the
proteins/genes they represent? (Or both?)

Tells you whether you can simplify one or the other
Do you need to search over “aggregate” species
designations?

Tells you how much of the species hierarchy you need to
store

Do you need to search on details of supporting data,
or just link to it?

Tells you whether you need to store all reference data, or
just a link to it

Do you need to associate data with a particular
version of a sequence?

Tells you whether you need to track versions

Copyright Melanie Nelson 2005

Additional Data Models

ENSEMBL data model
Relational database for ENSEMBL
http://www.ensembl.org/Docs/schema_description.html

bioSQL
http://obda.open-bio.org
From the Open Bioinformatics Foundation (open-bio.org)

aMAZE
Interesting data model for representing function
http://www.amaze.ulb.ac.be
Representing and analysing molecular and cellular function
using the computer. J. van Helden, et. al. (2000) Biol.
Chem. 381:921-935.

Copyright Melanie Nelson 2005

Homework
Reading for this week’s class

GenBank portion of the NCBI handbook, UniProt user manual (on
website)

Homework: Project plans are due next week

Reading for next week’s class
Paper discussing GeneLogic’s approach to managing gene expression
data
Implementing LIMS: A “How To” Guide

Optional reading for next week’s class
Nature Genetics paper on MIAME (strongly recommended, but will
require a trip to the library)
A computer scientist’s explanation of microarrays (strongly
recommended for those not familiar with the technique)
MAGE-ML paper

