Biological Database Design
Week 5

Winter '04
Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2004

Physical Database Design

Physical design is process by which the logical
design shown In the entity-relationship diagram is
transformed into tables and constraints in the
database

Also decide storage detalls and indexing
requirements

Highly dependent on choice of RDBMS and usage
requirements of the database
o Therefore, | am not going to cover this in detail

o For most small, research-type databases, physical design
decisions will not be crucial

o For large, production level databases, either take some
more DB classes or hire a DBA!

Copyright Melanie Nelson 2004

Transforming ER Diagrams into
Tables: General Rules

Each entity is a table
Each attribute 1s a column

Unless an attribute is marked as optional (O), the
columns has a NOT NULL constraint

If the primary key Is a system-generated unigue

identifier, it is a good idea to add UNIQUE

constraints to columns that are part of an alternate

key

o This ensures that the actual data in the table is not
duplicated

o Remember to put constraint on combination of columns
that make up the key (not on each column individually)

Copyright Melanie Nelson 2004

Transforming ER Diagrams into
Tables: Exceptions

May decide to store all subtypes in one table

o Reduces number of joins needed

o Downside: any attributes unigque to one or the
other subtypes must be NULLable for all subtypes

May generalize: I.e., group some related

entities into one table

o | usually only do this if | can include it in my logical
model, i.e., if the entities I'm grouping can be
replaced by a supertype entity

o Examples of this will be shown later in lecture

Copyright Melanie Nelson 2004

Transforming ER Diagrams into
Tables: Exceptions

May decide to remove some of the NO

NULL constraints

o Usually done for ease of data loading

o | don’t recommend this: either the data is required
or it isn’t!

0 Better idea: temporarily disable a constraint for a

batch load, and then reapply and flag (and deal
with!) exceptions

Copyright Melanie Nelson 2004

Transforming ER Diagrams into
Tables: Exceptions

May decide not to apply UNIQUE constraints across
large or complicated alternate keys
o These constraints may unacceptably slow down data entry

o May make a business decision not to look for duplicates (for
Instance, not looking for exact duplicate sequences from
different sources)

o Be careful: this creates a risk that data in table will be
duplicated even though the (system-generated) primary key
IS unique!

o Consider running a “data cleaning” program periodically

Copyright Melanie Nelson 2004

Denormalizing

IF any denormalizing is done, it is done during physical design
| DON'T RECOMMEND DOING THIS!

Before denormalizing:

o Tune queries

o Add or tune indexes

o Make sure developers are using bind variables (so that queries
are cached)

Increase cache size

o Understand the cost: perhaps users can accept slower queries
when they realize that the alternative is to risk data integrity

o Hire a good DBA, who can do all of the above better

If you must denormalize, | recommend the use of “summary
tables” or materialized views. More on this later in the lecture.

Copyright Melanie Nelson 2004

Biological Databases are Like Other
Databases

In many ways, biological databases are no
different from other databases
o Should follow good design practices that have

been developed in ~30 years of work on relational
databases

o Should take advantage of the many excellent
general database design and performance tuning
resources that are available

Copyright Melanie Nelson 2004

Unusual Aspects of Biological
Databases

Large subject area, with many
Interrelationships among data

Complex, constantly evolving “business
rules”

Special requirements of scientific culture

Prevalence of complex data types and
reliance on flat file formats

Copyright Melanie Nelson 2004

Handling the “Largeness’ of Biology

Biology encompasses many different “levels” of
enquiry

o Evolutionary and populations biology

o Medicine and gross anatomy

o Cell biology

o Molecular biology and biochemistry

Biology Is integrative

o It is common to use information from many disciplines

o Biological databases are beginning to cross disciplines, too

Copyright Melanie Nelson 2004

Handling the “Largeness’ of Biology

It IS not possible to design a database that
can handle all of biology
o At least not In one iteration!

Carefully define the scope of the database

0 Areas that are in scope should be addressed In
full detall

0 Areas outside of scope can be simplified, or
handled as text fields

If scope still seems large, consider
addressing only a portion of it in initial release

Copyright Melanie Nelson 2004

Handling “Largeness” of Biology

A common mistake of DB designers with no
biological background is to fail to stop
detailed design at appropriate place

o WIll ask biologists to describe data, and biologists

will oblige... but the full structure of that data
might be out of scope

o In general, DB designers with a background in
biology are more likely to know when to stop

describing the data in detall... but they should still
define their DB scope!

Copyright Melanie Nelson 2004

Examples of Scope Boundaries

The Protein Databank (PDB)

o Database to store information on 3D structure of proteins
and nucleic acids

o In scope:
Coordinates of structures
Experimental details of how structures were determined

Information about the construct used to produce material used
In experiments

o Out of scope:
Regulation of gene that produces protein/nucleic acid in vivo
Audit trail of experiments used to determine structures

o On the boundary:
Information about function of protein/nucleic acid in structure

Details about how any post-translational modifications on the
protein were produced

Copyright Melanie Nelson 2004

Example of Scope Boundaries

Database tracking interactions between enzymes
and inhibitors
o In scope
Exact sequences against which inhibition is measured
Relationships among inhibitors
Inhibition constants
o Out of scope
Methods for synthesizing of inhibitors
Evolutionary relationships among homologous enzymes
o On the boundary
Experimental protocol used to measure inhibition
Relationships between orthologous enzymes

Copyright Melanie Nelson 2004

Scope Boundaries in DB Desgin

Exact location of boundary Is a property of the

iIndividual project

o Different databases to store protein — inhibitor relationships
may have different boundaries

One may want to track at the level of atomic interactions
between protein and inhibitor

Another might not need atomic detail in interactions, but
require more detailed information about experimental
protocols

A third might need both!

o Scope may be refined during detailed requirements
gathering, but always know when you are redefining it!

Scope creep (a close relative of feature creep) is a
project killer

Copyright Melanie Nelson 2004

Scope Boundaries in DB Design

Things that are out of scope may be modeled as
free text (comment fields) or ignored

Things on the boundary often need user-extensible
classifications

o These may also show up as free text

o If an existing controlled vocabulary exists, using it gives
you extra information “for free”

Everything in scope must be modeled in full detalil

o Should incorporate existing controlled vocabularies where
possible

o May find you need to extend/modify existing vocabularies

Copyright Melanie Nelson 2004

Protein Function Out of Scope

Protein The biological function of a protein is
Protein id INTEGER stored as free text. This isn t much use
— / for searching, but does provide context
Bio_function VARCHAR?Z2 (2000) to scientists using the database. Multiple

functions are all just listed in the free text
field.

Even if biological function is outside of your scope, you may want to
separate multiple functions, and track who provided each function:

Protein f Protein_bio_function
Protein id INTEGER R L ¢ Protein_bio_function_id INTEGER

Protein_id INTEGER (FK)
Bio_function VARCHARZ2 (2000)
Submitter_id INTEGER (FK)
Date_submitted DATETIME

Copyright Melanie Nelson 2004

Protein Function on the Scope
Boundary

Protein Protein_bio_function

performs
Protein_id INTEGER Protein_id INTEGER (FK)
Is performed byl Bio_function_id INTEGER (FK)

Bio_function
Bio function_id INTEGER _

— — describes
Bio_function_ext_id VARCHAR2 (50) """~ 77 7T TTTTTTTTTITIITIITII i
Bio_function_source_id INTEGER (FK) Bio_function_source
Bio_function_type_code CHAR Bio_function_source_id INTEGER

Bio_function_desc VARCHAR?2 (2000)

Comment VARCHAR?2 (2000) Bio_function_source_name VARCHAR?Z (200)

Bio_function_source URL VARCHAR2 (500)

classifies Bio_function_source_desc VARCHAR2 (2000)

e
Bio_function_type :
Bio_function_type_code CHAR

Bio_function_type name VARCHAR2 (100)
Bio_function_type_desc VARCHAR?Z2 (2000)

Copyright Melanie Nelson 2004

Protein Function on the Scope
BO U n d ary Sources of biological function include:

*Enzyme commission (EC) numbers
*Gene ontology (GO)

Bio_function eInternal/proprietary sources
Bio_function_id INTEGER _

— — describes
Bio_function_ext_id VARCHAR2 (50) ® "~~~ " TTTTTTTTTTTTT IS i
Bio_function_source_id INTEGER (FK) Bio_function_source
Bio_function_type_code CHAR Bio_function_source_id INTEGER

Bio_function_desc VARCHAR?2 (2000)

Comment VARCHAR2 (2000) Bio_function_source_name VARCHAR?Z2 (200)

Bio_function_source URL VARCHAR2 (500)

classifies Bio_function_source_desc VARCHAR2 (2000)

’

Bio_function_type !
Bio_function_type_code CHAR : :
10_TNCHON_yPe_ Some common biological

Bio_function_type_name VARCHAR2 (100) $—— function types are:
Bio_function_type desc VARCHAR?2 (2000) -Biochemical '

«Cellular
*Pathological

Copyright Melanie Nelson 2004

Protein Function In Scope

Handling protein function when it is within the scope of your database is
quite complex and will almost certainly require generalization

o If you try to model each type of function and each aspect of function
separately, your data model will be very large

o Non-generalized data model is also unlikely to be able to handle evolving
field

Some things to think about

o Are all types of function within scope, or only one type (such as
biochemical)?

o Will you generate your own classification scheme and cross-reference it to
public schemes like EC numbers or GO, or limit yourself to the public
schemes

Scientists must be involved in this decision
Public schemes are inadequate for some applications

o Where will the functional data come from?

You will almost certainly need to track source
Example data model: the aMAZE database
o www.amaze.ulb.ac.be

o Representing and analysing molecular and cellular function using the
computer. J. van Helden, et. al. (2000) Biol. Chem. 381:921-935

Copyright Melanie Nelson 2004

Handling Evolving “Business Rules”

Our understanding of biology Is far from
complete, and constantly changing

Can never fully know the “business rules” for
a biological database

o The rules that are derived from biology are
necessarily subject to change

0 Be wary of organization specific limitations on
complexity when it is within scope

These are likely to change as the needs of the
organization evolve

Copyright Melanie Nelson 2004

Use of Generalization

Generalization in databases

o Storing multiple subtypes of data in a table (or set of tables) that
represent the supertype
o May lead to some NULLable attributes

NULLs must be allowed on attributes that apply only to some of the
subtypes

For this reason, may not be appropriate for some data

o Can avoid NULLs by having separate subtype tables as well as
the supertype table

If you represent the supertype rather than the individual
subtypes, your database schema is more robust to changes in
data being stored

Generalization can also decrease the size of your schema

o However, abstraction may make schema more difficult to
understand

Copyright Melanie Nelson 2004

Example of Generalization

Database to store information about biological

molecules

o In requirements, scientists indicate they need to store data

about proteins, genes, and lipids

Protein

Gene

Protein_id INTEGER

Gene_id INTEGER

v

Tables to store protein
data, including:
*Protein sequences
*Protein functions
«3-D structures

v

Tables to store gene
data, including:
*Gene sequences
*Gene functions
*Gene regulation

Copyright Melanie Nelson 2004

Lipid

Lipid_id INTEGER

Tables to store lipid
data, including:

«Lipid functions
*Chemical composition
*Biophysical properties

Generalizing Biological Molecules

Further consideration reveals that there are many types of
biological molecules not covered in current requirements

o MRNA

o Ribosomal RNA

o Small molecule metabolites
2 Inorganic ions

o Etc.

Scientists may not need to store information about these now,
but this may change

You can design your database so that it can store at least basic
iInformation about the other types of molecules

o If (when!) scientists need to store information about these types,
the DB can accommodate

o May need to add subtype tables to handle data specific to the
new types

Copyright Melanie Nelson 2004

Generalizing Biological Molecules

Bio molecule

Bio_molecule_type

Bio_molecule_id INTEGER) N—

Bio_molecule_type code CHAR

Bio_molecule_type code CHAR (FK)

Bio_molecule_type VARCHAR?Z2 (100)
Bio_molecule_type desc VARCHAR2 (2000)

Protein

[Bio_molecule_id INTEGER (FK)}

Bio_molecule type code

Lipid

Is coded Gene

(Bio_molecule_id INTEGER (FK) |

| SMILES_string VARCHAR?2 (500)

for by

[Bio_molecule_id INTEGER (FK)]

Protein_gene_reln

P
(Gene_id INTEGER (FK

rotein_id INTEGER (FK) Codes for

Copyright Melanie Nelson 2004

Generalizing Biological Molecules

Bio _molecule Bio_molecule _name
Bio_molecule_id INTEGER p(Bio_molecule_id INTEGER (FK) A
Bio_molecule_type code CHAR (FK) Bio_molecule_name VARCHAR?2 (200)

Name_source VARCHAR?2 (200)
Primary CHAR

J

Bio_molecule_function

Bio_molecule_function_id INTEGER

Bio_molecule_id INTEGER (FK)
Bio_molecule_function VARCHAR2 (200)
Function_source VARCHAR2 (200)
Comment VARCHAR?2 (2000) (O) Bio_molecule_regulation o

Bio_molecule_regulation_id INTEGER

Bio_molecule_id INTEGER (FK)
Regulation_method VARCHAR2 (200)
Regulation_source VARCHAR?Z2 (200)
Comment VARCHAR2 (2000) (O)

Copyright Melanie Nelson 2004

Generalizing Biological Molecules

Bio molecule Bio_sequence

Bio_molecule_id INTEGER Bio_sequence_id INTEGER

Bio_molecule_type_code CHAR (FK) r---- “#Bio_molecule_id INTEGER(FK)
Sequence_source VARCHAR?2 (200)
Source_db_sequence_ident VARCHAR?2 (50)

Biophys_property ;

' | Sequence_text CLOB
Biophys_property id INTEGER 'L
Bio_molecule_id INTEGER(FK) Bio_molecule_structure !

Biophys_property type_id (FK) : :
Biophys_property_value FLOAT Bio_structure_id INTEGER

Biophys_property source VARCHAR?2 (200) Bio_molecule_id INTEGER(FK)

Comment VARCHAR?2 (2000) Structure_type_code CHAR (FK)
. Structure_source VARCHAR2 (200)

Biophys_property_type Source_db_structure_ident VARCHAR?2 (50)

Structure_text CLOB (O)

Biophys_property type id INTEGER

Biophys_property_type VARCHAR?2 (200)
Biophys_property_units VARCHAR?2 (50)
Biophys property type desc VARCHAR?Z2 (2000)

Copyright Melanie Nelson 2004

Further Generalization

Bio _molecule Bio_molecule _name
Bio_molecule_id INTEGER p(Bio_molecule_id INTEGER (FK) A
Bio_molecule_type code CHAR (FK) Bio_molecule_name VARCHAR?2 (200)

Name_source VARCHAR?2 (200)
Primary CHAR

J

Bio_molecule_function

Bio_molecule_function_id INTEGER

Bio_molecule_id INTEGER (FK)
Bio_molecule_function VARCHAR2 (200)
Function_source VARCHAR2 (200)
Comment VARCHAR?2 (2000) (O) Bio_molecule_regulation o

Bio_molecule_regulation_id INTEGER

Bio_molecule_id INTEGER (FK)
Regulation_method VARCHAR2 (200)
Regulation_source VARCHAR?Z2 (200)
Comment VARCHAR2 (2000) (O)

Copyright Melanie Nelson 2004

Further Generalization

Bio molecule

Bio_molecule id INTEGER Now you see why | often favor using a

, / primary_name attribute: it allows the other
Bio_molecule_type_code CHAR (FK)] names to be treated as annotations.
Primary_name VARCHAR?2 (200)

Bio_molecule_annotation

. Annotation type

Annotation_id INTEGER

Annotation_type id INTEGER

Bio_molecule_id INTEGER (FK)

Annotation_type_id INTEGER (FK) @ ------ Annotation_type VARCHAR?2 (50)

Annotation_type desc VARCHAR2 (2000)

Annotation_text VARCHAR?2 (200)
Annotation_source VARCHARZ2 (200)
Comment VARCHAR2 (2000) (O)

Copyright Melanie Nelson 2004

Limits of Generalization

Bio_sequence

Bio_sequence_id INTEGER

Bio_molecule_id INTEGER(FK)
Sequence_source VARCHAR?2 (200)
Source_db_sequence_ident VARCHAR?2 (50)
Sequence _text CLOB

Bio_molecule_structure

Bio_structure_id INTEGER

Bio_molecule_id INTEGER(FK)
Structure_type_code CHAR (FK)
Structure_source VARCHAR?2 (200)
Source_db_structure ident VARCHAR?2 (50)
Structure_text CLOB (O)

Bio_sequence and
Bio_molecule_structure have almost
indentical attribute lists, should we
generalize them into a supertype?

There is no “right” answer, but |
wouldn’t. The supertype seems forced.
Could use “Bio_molecule_structure”.
Sequences are primary structure,
three-dimensional structures are
tertiary structure. But would we store
secondary and quaternary structure
data, too?

Also, there can actually be more than
one biomolecule in a “structure”: this is
not true of sequences.

Copyright Melanie Nelson 2004

More Detailed Storage of Biomolecule
Structure

Bio _molecule
Bio_molecule_id INTEGER
Bio_molecule_structure

Bio_molecule_type code CHAR (FK)
' Bio_structure_id INTEGER (FK)
Bio_molecule_id INTEGER(FK)

Bio_structure
| l Comment VARCHARZ2 (2000)

Bio_structure _id INTEGER

Structure_type_code CHAR (FK)
Structure_source VARCHAR?2 (200) \
Source_db_structure ident VARCHAR?2 (50) Common structure types are:

Structure_text CLOB (O) oX-ray

‘NMR
*Electron microscopy
Computational model

Copyright Melanie Nelson 2004

Respecting Scientific Culture

Some important aspects of scientific culture:
o Need to track the source of data
2 Need to accommodate the “fuzziness” of biology

Databases that fail to respect these aspects
will not be used

Copyright Melanie Nelson 2004

Tracking the Source of Data

Discussed In slides for week 3

Source Is often provided by a peer-reviewed
publication
o Publication citation provides unequivocal link to the source

Common to simply provide a link to PubMed

Some sources are not in PubMed, and must be
handled differently

Merely storing the PubMed identifier does not allow
gueries into the reference data

Copyright Melanie Nelson 2004

Handling “Fuzziness” in Biology

Recognize that there will be an exception to
any biological classification scheme

o Make schemes user-extensible using “lookup”
tables

o Provide a comment field so that users can
document the exceptions

Accomodate uncertainty in biological data

Copyright Melanie Nelson 2004

Accommodating Uncertainties

Uncertainty is associated with all scientific data
o Imperfections in measurement techniques
o Incomplete knowledge

Methods to handle uncertainty are chosen based
on:

o Type of uncertainty

o Requirements of the scientists using the data

Ignoring uncertainty can corrupt your database
o Scientific conclusions may be based on data in DB

o Uncertainty in data will influence conclusions

o If users can’t assess uncertainty of data, your database
loses value

Copyright Melanie Nelson 2004

Types of Uncertainty

Uncertainty in quantitative data can be
calculated
o Store raw data, and calculate on the fly

o Store data and calculated error (e.g., average and
standard deviation)

Uncertainty in qualitative data is more difficult
to handle

0 Some types of experiments are inherently less
certain than others

Copyright Melanie Nelson 2004

Examples of Biological Data with
Uncertainty

Protein-protein interactions

o Large scale studies and individual studies have
differing uncertainties

Biophysical measurements
o Often include quantitative uncertainties

Protein function annotation

o Large difference in uncertainty between
experimental and computational annotations

Copyright Melanie Nelson 2004

\ Function Annotations: Example of the
Need to Include Uncertainty

Protein sequence annotated as “sugar kinase”
based on experimental evidence

]]
Direct comparison of
BLAST shows 45% protein 1 and protein
identity, SO second 3 reveals only 28%
sequence is also identity: not enough
annotated as a for confident
sugar kinase annotation transfer
1] |

BLAST shows 41%
identity to second

protein, so third If a scientist assumes the annotations on
sequence is also protein 1 and protein 2 are equally certain,
annotated as a an incorrect conclusion may result.

“sugar kinase”

Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

The problem illustrated by the example is not
caused by the first annotation transfer

The problem is caused by the fact that a
scientist using the data does not know that
the annotation on protein 2 Is less certain
than the annotation on protein 1

Solution is to include this uncertainty in the
data presented to the user

Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

Include it in the annotation text: annotate protein 2
as “sugar kinase (by similarity)”

o GenBank and other big sequence databases do this
Include information about the source of the
annotation: classify annotation on protein 1 as
“experimental” and annotationon protein 2 as
“computational” or “derived”

o Gene Ontology includes evidence classifications

Link annotation directly to the supporting data

o May be appropriate for database for lab/company that is in
the protein annotation business

Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

Protein Protein _annotation

Protein_id INTEGER |~~~ . Protein_annotation_id INTEGER

Protein_id INTEGER (FK)
Protein_annotation VARCHAR2 (500)
Annotation_support_class _code CHAR (FK)
ro--soos ¢ Comment VARCHAR?2 (2000)

Annotation_support_class

Annotation_support_class _code CHAR

Annotation_support_class VARCHAR?Z2 (200)
Annotation_support_class_desc VARCHAR2 (500)

Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

Protein Protein _annotation

Protein_id INTEGER |~~~ . Protein_annotation_id INTEGER

Protein_id INTEGER (FK)
Protein_annotation VARCHAR2 (500)
Comment VARCHAR2 (2000)

Annotation_evidence Classifying the evidence type is a good idea

Annotation_evidence_id INTEGER even if you store the evidence: this supports

queries to find only annotations with
Evidence type code CHAR (FK)
Evidence CLOB <«

In reality, this will probably be a link to a set of
tables storing the evidence. Decision is made
based on scope/requirements: do you need to
query into the evidence or just present it?

Copyright Melanie Nelson 2004

Handling Complex Data Types

Two types of complex data types are
common In biological databases

o Data that can be broken into normalized tables,
out IS often used In a flat file format

o Data that is truly complex, and cannot be broken
Into tables

Both are often left outside of the database or
stored in a CLOB or BLOB field

However, there are different considerations In
the handling of the two types

Copyright Melanie Nelson 2004

Flat File Formats in Biology

Nucleotide and protein sequence data

o GenBank
o SWISS-PROT
o FASTA

Protein structure data
o PDB

Gene expression data
o0 MAGE-ML (not really a flat file, an XML format)

Copyright Melanie Nelson 2004

Handling Flat File Formatted Data

Decision to be made: parse into the database or
store in file system and reference from the
database?

Answer depends on:

o Scope of the database

If data in the flat files is not in scope, it can be difficult to justify
effort required to parse it into the database

o Resources available for handling data

Flat file-based systems have fewer integrity constraints, can
change with little notice, and often have exceptions.

Often necessary to revisit parsing software

o Politics of your organization

Some bioinformaticists may prefer flat files because that is
what all of their tools run on

Copyright Melanie Nelson 2004

Deciding Whether or Not to Parse

Advantages of parsing data into database
tables

o More thoroughly integrates data
o Allows more complex queries on the data

Advantages of leaving data in flat files

o Don’t have to handle inconsistencies and changes
In flat files

o Data is stored in the format required by many
bioinformatics tools

Copyright Melanie Nelson 2004

Complex Data Types in Biology

Complex data types are the raw data for a variety of
experiments

o Images (Gene expression arrays, microscopy)

o Spectra (NMR, mass spec.)

o Electron density (X-ray crystallography, electron
microscopy)

Complex data is usually further analyzed

The results of these analyses are often stored In
databases

The raw data may be stored as a BLOB, or stored in
the file system and referenced

Copyright Melanie Nelson 2004

Storing Data in Large Object Fields

Both flat files and complex data types can be stored
In large object fields (LOBSs) or In file system
(database references path)

Disadvantages of storing data in LOBs

o Often, data must also exist outside of DB for access by
specialist programs
Storing data in two places can lead to inconsistencies

Disadvantages of storing data in the file system:

o Data is outside of DBMS consistency controls

If data is changed, references from DB may no longer be
appropriate or correct

o Data can be moved, making DB references stale

Copyright Melanie Nelson 2004

Parting Words

Successful design of biological databases requires
understanding of biology and database principles

a2 Wil not necessarily have both in same person

o Work in teams, and respect the complexity of the field that is not
your own

For most research-scale DBs, performance will be adequate
without any tricks

o Don't fall into the trap of denormalizing because you've heard
that normalized databases have performance issues

o Denormalize only as a last resort

For many of the design issues, there is no “right answer”

o Decisions often depend on requirements of the DB

o Field is too young for consensus on best way to handle data

o Don'’t get “analysis paralysis”: take your best shot, and learn from
how it works (or doesn’t!)

Copyright Melanie Nelson 2004

