
Copyright Melanie Nelson 2004

Biological Database Design
Week 5

Winter ’04

Melanie Nelson, Ph.D.



Copyright Melanie Nelson 2004

Physical Database Design
! Physical design is process by which the logical 

design shown in the entity-relationship diagram is 
transformed into tables and constraints in the 
database

! Also decide storage details and indexing 
requirements

! Highly dependent on choice of RDBMS and usage 
requirements of the database
" Therefore, I am not going to cover this in detail
" For most small, research-type databases, physical design 

decisions will not be crucial
" For large, production level databases, either take some 

more DB classes or hire a DBA!



Copyright Melanie Nelson 2004

Transforming ER Diagrams into 
Tables: General Rules
! Each entity is a table
! Each attribute is a column
! Unless an attribute is marked as optional (O), the 

columns has a NOT NULL constraint
! If the primary key is a system-generated unique 

identifier, it is a good idea to add UNIQUE 
constraints to columns that are part of an alternate 
key
" This ensures that the actual data in the table is not 

duplicated
" Remember to put constraint on combination of columns 

that make up the key (not on each column individually)



Copyright Melanie Nelson 2004

Transforming ER Diagrams into 
Tables: Exceptions 
! May decide to store all subtypes in one table

" Reduces number of joins needed
" Downside: any attributes unique to one or the 

other subtypes must be NULLable for all subtypes

! May generalize: i.e., group some related 
entities into one table
" I usually only do this if I can include it in my logical 

model, i.e., if the entities I’m grouping can be 
replaced by a supertype entity

" Examples of this will be shown later in lecture



Copyright Melanie Nelson 2004

Transforming ER Diagrams into 
Tables: Exceptions
! May decide to remove some of the NOT 

NULL constraints
" Usually done for ease of data loading
" I don’t recommend this: either the data is required 

or it isn’t!
" Better idea: temporarily disable a constraint for a 

batch load, and then reapply and flag (and deal 
with!) exceptions



Copyright Melanie Nelson 2004

Transforming ER Diagrams into 
Tables: Exceptions
! May decide not to apply UNIQUE constraints across 

large or complicated alternate keys
" These constraints may unacceptably slow down data entry
" May make a business decision not to look for duplicates (for 

instance, not looking for exact duplicate sequences from 
different sources)

" Be careful: this creates a risk that data in table will be 
duplicated even though the (system-generated) primary key 
is unique!

" Consider running a “data cleaning” program periodically



Copyright Melanie Nelson 2004

Denormalizing
! IF any denormalizing is done, it is done during physical design
! I DON’T RECOMMEND DOING THIS!
! Before denormalizing:

" Tune queries
" Add or tune indexes
" Make sure developers are using bind variables (so that queries 

are cached)
" Increase cache size
" Understand the cost: perhaps users can accept slower queries 

when they realize that the alternative is to risk data integrity
" Hire a good DBA, who can do all of the above better

! If you must denormalize, I recommend the use of “summary 
tables” or materialized views. More on this later in the lecture.



Copyright Melanie Nelson 2004

Biological Databases are Like Other 
Databases
! In many ways, biological databases are no 

different from other databases
" Should follow good design practices that have 

been developed in ~30 years of work on relational 
databases

" Should take advantage of the many excellent 
general database design and performance tuning 
resources that are available



Copyright Melanie Nelson 2004

Unusual Aspects of Biological 
Databases
! Large subject area, with many 

interrelationships among data
! Complex, constantly evolving “business 

rules”
! Special requirements of scientific culture
! Prevalence of complex data types and 

reliance on flat file formats



Copyright Melanie Nelson 2004

Handling the “Largeness” of Biology

! Biology encompasses many different “levels” of 
enquiry
" Evolutionary and populations biology
" Medicine and gross anatomy
" Cell biology
" Molecular biology and biochemistry

! Biology is integrative
" It is common to use information from many disciplines
" Biological databases are beginning to cross disciplines, too

An 
incomplete 
list!}



Copyright Melanie Nelson 2004

Handling the “Largeness” of Biology
! It is not possible to design a database that 

can handle all of biology
" At least not in one iteration!

! Carefully define the scope of the database
" Areas that are in scope should be addressed in 

full detail
" Areas outside of scope can be simplified, or 

handled as text fields

! If scope still seems large, consider 
addressing only a portion of it in initial release



Copyright Melanie Nelson 2004

Handling “Largeness” of Biology
! A common mistake of DB designers with no 

biological background is to fail to stop 
detailed design at appropriate place
" Will ask biologists to describe data, and biologists 

will oblige… but the full structure of that data 
might be out of scope

" In general, DB designers with a background in 
biology are more likely to know when to stop 
describing the data in detail… but they should still 
define their DB scope!



Copyright Melanie Nelson 2004

Examples of Scope Boundaries
! The Protein Databank (PDB)

" Database to store information on 3D structure of proteins 
and nucleic acids

" In scope:
! Coordinates of structures
! Experimental details of how structures were determined
! Information about the construct used to produce material used 

in experiments
" Out of scope:

! Regulation of gene that produces protein/nucleic acid in vivo
! Audit trail of experiments used to determine structures

" On the boundary:
! Information about function of protein/nucleic acid in structure
! Details about how any post-translational modifications on the 

protein were produced



Copyright Melanie Nelson 2004

Example of Scope Boundaries
! Database tracking interactions between enzymes 

and inhibitors
" In scope

! Exact sequences against which inhibition is measured
! Relationships among inhibitors
! Inhibition constants 

" Out of scope
! Methods for synthesizing of inhibitors
! Evolutionary relationships among homologous enzymes

" On the boundary
! Experimental protocol used to measure inhibition
! Relationships between orthologous enzymes



Copyright Melanie Nelson 2004

Scope Boundaries in DB Desgin
! Exact location of boundary is a property of the 

individual project
" Different databases to store protein – inhibitor relationships 

may have different boundaries
! One may want to track at the level of atomic interactions 

between protein and inhibitor
! Another might not need atomic detail in interactions, but 

require more detailed information about experimental 
protocols

! A third might need both!
" Scope may be refined during detailed requirements 

gathering, but always know when you are redefining it!
! Scope creep (a close relative of feature creep) is a 

project killer



Copyright Melanie Nelson 2004

Scope Boundaries in DB Design
! Things that are out of scope may be modeled as 

free text (comment fields) or ignored
! Things on the boundary often need user-extensible 

classifications
" These may also show up as free text
" If an existing controlled vocabulary exists, using it gives 

you extra information “for free”

! Everything in scope must be modeled in full detail
" Should incorporate existing controlled vocabularies where 

possible
" May find you need to extend/modify existing vocabularies



Copyright Melanie Nelson 2004

Protein Function Out of Scope

Protein

Protein_id INTEGER

Protein_bio_function

Protein_id INTEGER (FK)
Bio_function VARCHAR2 (2000)
Submitter_id INTEGER (FK)
Date_submitted DATETIME

performs
Protein_bio_function_id INTEGER

Protein

Protein_id INTEGER

Bio_function VARCHAR2 (2000)

The biological function of a protein is 
stored as free text. This isn’t much use 
for searching, but does provide context 
to scientists using the database. Multiple 
functions are all just listed in the free text 
field.

Even if biological function is outside of your scope, you may want to 
separate multiple functions, and track who provided each function:



Copyright Melanie Nelson 2004

Protein Function on the Scope 
Boundary

Protein

Protein_id INTEGER

Protein_bio_function

Protein_id INTEGER (FK)
Bio_function_id INTEGER (FK)

Bio_function

Bio_function_id INTEGER

Bio_function_ext_id VARCHAR2 (50)
Bio_function_source_id INTEGER (FK)
Bio_function_type_code CHAR
Bio_function_desc VARCHAR2 (2000)
Comment VARCHAR2 (2000)

Bio_function_source

Bio_function_source_id INTEGER
Bio_function_source_name VARCHAR2 (200)
Bio_function_source_URL VARCHAR2 (500)
Bio_function_source_desc VARCHAR2 (2000)

Bio_function_type
Bio_function_type_code CHAR
Bio_function_type_ name VARCHAR2 (100)
Bio_function_type_desc VARCHAR2 (2000)

describes

classifies

Is performed by

performs



Copyright Melanie Nelson 2004

Protein Function on the Scope 
Boundary

Bio_function

Bio_function_id INTEGER

Bio_function_ext_id VARCHAR2 (50)
Bio_function_source_id INTEGER (FK)
Bio_function_type_code CHAR
Bio_function_desc VARCHAR2 (2000)
Comment VARCHAR2 (2000)

Bio_function_source

Bio_function_source_id INTEGER
Bio_function_source_name VARCHAR2 (200)
Bio_function_source_URL VARCHAR2 (500)
Bio_function_source_desc VARCHAR2 (2000)

Bio_function_type
Bio_function_type_code CHAR
Bio_function_type_ name VARCHAR2 (100)
Bio_function_type_desc VARCHAR2 (2000)

describes

classifies

Some common biological 
function types are:
•Biochemical
•Cellular
•Pathological

Sources of biological function include:
•Enzyme commission (EC) numbers
•Gene ontology (GO)
•Internal/proprietary sources



Copyright Melanie Nelson 2004

Protein Function In Scope
! Handling protein function when it is within the scope of your database is 

quite complex and will almost certainly require generalization
" If you try to model each type of function and each aspect of function 

separately, your data model will be very large
" Non-generalized data model is also unlikely to be able to handle evolving 

field
! Some things to think about

" Are all types of function within scope, or only one type (such as 
biochemical)?

" Will you generate your own classification scheme and cross-reference it to 
public schemes like EC numbers or GO, or limit yourself to the public 
schemes
! Scientists must be involved in this decision
! Public schemes are inadequate for some applications

" Where will the functional data come from?
! You will almost certainly need to track source

! Example data model: the aMAZE database
" www.amaze.ulb.ac.be
" Representing and analysing molecular and cellular function using the 

computer. J. van Helden, et. al. (2000) Biol. Chem. 381:921-935



Copyright Melanie Nelson 2004

Handling Evolving “Business Rules”

! Our understanding of biology is far from 
complete, and constantly changing

! Can never fully know the “business rules” for 
a biological database
" The rules that are derived from biology are 

necessarily subject to change
" Be wary of organization specific limitations on 

complexity when it is within scope
! These are likely to change as the needs of the 

organization evolve



Copyright Melanie Nelson 2004

Use of Generalization
! Generalization in databases

" Storing multiple subtypes of data in a table (or set of tables) that 
represent the supertype

" May lead to some NULLable attributes
! NULLs must be allowed on attributes that apply only to some of the 

subtypes
! For this reason, may not be appropriate for some data

" Can avoid NULLs by having separate subtype tables as well as 
the supertype table

! If you represent the supertype rather than the individual 
subtypes, your database schema is more robust to changes in 
data being stored

! Generalization can also decrease the size of your schema
" However, abstraction may make schema more difficult to 

understand



Copyright Melanie Nelson 2004

Example of Generalization
! Database to store information about biological 

molecules
" In requirements, scientists indicate they need to store data 

about proteins, genes, and lipids

Protein

Protein_id INTEGER

Gene

Gene_id INTEGER

Lipid

Lipid_id INTEGER

Tables to store protein 
data, including:
•Protein sequences
•Protein functions
•3-D structures

Tables to store lipid 
data, including:
•Lipid functions
•Chemical composition
•Biophysical properties

Tables to store gene 
data, including:
•Gene sequences
•Gene functions
•Gene regulation

Similar or overlapping attribute lists are a clue 
that you should consider generalizing



Copyright Melanie Nelson 2004

Generalizing Biological Molecules
! Further consideration reveals that there are many types of 

biological molecules not covered in current requirements
" mRNA
" Ribosomal RNA
" Small molecule metabolites
" Inorganic ions
" Etc.

! Scientists may not need to store information about these now, 
but this may change

! You can design your database so that it can store at least basic
information about the other types of molecules
" If (when!) scientists need to store information about these types, 

the DB can accommodate
" May need to add subtype tables to handle data specific to the 

new types



Copyright Melanie Nelson 2004

Generalizing Biological Molecules

Bio_molecule
Bio_molecule_id INTEGER

Bio_molecule_type_code CHAR (FK)

Protein
Bio_molecule_id INTEGER (FK)

Gene
Bio_molecule_id INTEGER (FK)

Lipid
Bio_molecule_id INTEGER (FK)
SMILES_string VARCHAR2 (500)

Bio_molecule_type

Bio_molecule_type_code CHAR
Bio_molecule_type VARCHAR2 (100)
Bio_molecule_type_desc VARCHAR2 (2000)

Bio_molecule_type_code

Protein_gene_reln
Protein_id INTEGER (FK)
Gene_id INTEGER (FK

Codes for

Is coded 
for by

By indicating an incomplete set of 
subtypes and using a “look up” table 
for biomolecule types, this design 
allows basic information to be stored 
about other types of biomolecules.



Copyright Melanie Nelson 2004

Generalizing Biological Molecules
Bio_molecule

Bio_molecule_id INTEGER

Bio_molecule_type_code CHAR (FK)

Bio_molecule_function

Bio_molecule_function_id INTEGER

Bio_molecule_id INTEGER (FK)
Bio_molecule_function VARCHAR2 (200)
Function_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

Bio_molecule_name

Bio_molecule_id INTEGER (FK)
Bio_molecule_name VARCHAR2 (200)
Name_source VARCHAR2 (200)
Primary CHAR

Bio_molecule_regulation

Bio_molecule_regulation_id INTEGER

Bio_molecule_id INTEGER (FK)
Regulation_method VARCHAR2 (200)
Regulation_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

P

Without generalization, I would 
have needed one function table for 
each biomolecule type



Copyright Melanie Nelson 2004

Generalizing Biological Molecules
Bio_molecule

Bio_molecule_id INTEGER

Bio_molecule_type_code CHAR (FK)

Bio_sequence

Bio_sequence_id INTEGER

Bio_molecule_id INTEGER(FK)
Sequence_source VARCHAR2 (200)
Source_db_sequence_ident VARCHAR2 (50)
Sequence_text CLOB

Bio_molecule_structure

Bio_structure_id INTEGER

Bio_molecule_id INTEGER(FK)
Structure_type_code CHAR (FK)
Structure_source VARCHAR2 (200)
Source_db_structure_ident VARCHAR2 (50)
Structure_text CLOB (O)

Biophys_property

Biophys_property_id INTEGER

Bio_molecule_id INTEGER(FK)
Biophys_property_type_id (FK)
Biophys_property_value FLOAT
Biophys_property_source VARCHAR2 (200)
Comment VARCHAR2 (2000)

Biophys_property_type

Biophys_property_type_id INTEGER

Biophys_property_type VARCHAR2 (200)
Biophys_property_units VARCHAR2 (50)
Biophys_property_type_desc VARCHAR2 (2000)

None of the relationships are required, 
because no type of info is stored for all 
biomolecule types



Copyright Melanie Nelson 2004

Further Generalization
Bio_molecule

Bio_molecule_id INTEGER

Bio_molecule_type_code CHAR (FK)

Bio_molecule_function

Bio_molecule_function_id INTEGER

Bio_molecule_id INTEGER (FK)
Bio_molecule_function VARCHAR2 (200)
Function_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

Bio_molecule_name

Bio_molecule_id INTEGER (FK)
Bio_molecule_name VARCHAR2 (200)
Name_source VARCHAR2 (200)
Primary CHAR

Bio_molecule_regulation

Bio_molecule_regulation_id INTEGER

Bio_molecule_id INTEGER (FK)
Regulation_method VARCHAR2 (200)
Regulation_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

P

Notice the similar attribute lists for 
these three entities!



Copyright Melanie Nelson 2004

Further Generalization
Bio_molecule

Bio_molecule_id INTEGER

Bio_molecule_type_code CHAR (FK)
Primary_name VARCHAR2 (200)

Bio_molecule_annotation

Annotation_id INTEGER

Bio_molecule_id INTEGER (FK)
Annotation_type_id INTEGER (FK)
Annotation_text VARCHAR2 (200)
Annotation_source VARCHAR2 (200)
Comment VARCHAR2 (2000) (O)

Now you see why I often favor using a 
primary_name attribute: it allows the other 
names to be treated as annotations.

This design has two advantages:
•Fewer entities
•Easy to add new annotation types

Annotation_type
Annotation_type_id INTEGER

Annotation_type VARCHAR2 (50)
Annotation_type_desc VARCHAR2 (2000)



Copyright Melanie Nelson 2004

Limits of Generalization

Bio_molecule_structure

Bio_structure_id INTEGER

Bio_molecule_id INTEGER(FK)
Structure_type_code CHAR (FK)
Structure_source VARCHAR2 (200)
Source_db_structure_ident VARCHAR2 (50)
Structure_text CLOB (O)

Bio_sequence

Bio_sequence_id INTEGER

Bio_molecule_id INTEGER(FK)
Sequence_source VARCHAR2 (200)
Source_db_sequence_ident VARCHAR2 (50)
Sequence_text CLOB

Bio_sequence and 
Bio_molecule_structure have almost 
indentical attribute lists, should we 
generalize them into a supertype?

There is no “right” answer, but I 
wouldn’t. The supertype seems forced. 
Could use “Bio_molecule_structure”. 
Sequences are primary structure, 
three-dimensional structures are 
tertiary structure. But would we store 
secondary and quaternary structure 
data, too?

Also, there can actually be more than 
one biomolecule in a “structure”: this is 
not true of sequences.



Copyright Melanie Nelson 2004

More Detailed Storage of Biomolecule 
Structure

Bio_molecule
Bio_molecule_id INTEGER

Bio_molecule_type_code CHAR (FK) Bio_molecule_structure

Bio_structure_id INTEGER (FK)
Bio_molecule_id INTEGER(FK)

Structure_type_code CHAR (FK)
Structure_source VARCHAR2 (200)
Source_db_structure_ident VARCHAR2 (50)
Structure_text CLOB (O)

Comment VARCHAR2 (2000)
Bio_structure_id INTEGER

Bio_structure

Common structure types are:
•X-ray
•NMR
•Electron microscopy
•Computational model



Copyright Melanie Nelson 2004

Respecting Scientific Culture

! Some important aspects of scientific culture:
" Need to track the source of data
" Need to accommodate the “fuzziness” of biology

! Databases that fail to respect these aspects 
will not be used



Copyright Melanie Nelson 2004

Tracking the Source of Data

! Discussed in slides for week 3
! Source is often provided by a peer-reviewed 

publication
" Publication citation provides unequivocal link to the source

! Common to simply provide a link to PubMed
! Some sources are not in PubMed, and must be 

handled differently
! Merely storing the PubMed identifier does not allow 

queries into the reference data



Copyright Melanie Nelson 2004

Handling “Fuzziness” in Biology

! Recognize that there will be an exception to 
any biological classification scheme
" Make schemes user-extensible using “lookup”

tables
" Provide a comment field so that users can 

document the exceptions

! Accomodate uncertainty in biological data



Copyright Melanie Nelson 2004

Accommodating Uncertainties
! Uncertainty is associated with all scientific data

" Imperfections in measurement techniques
" Incomplete knowledge

! Methods to handle uncertainty are chosen based 
on:
" Type of uncertainty
" Requirements of the scientists using the data

! Ignoring uncertainty can corrupt your database
" Scientific conclusions may be based on data in DB
" Uncertainty in data will influence conclusions
" If users can’t assess uncertainty of data, your database 

loses value



Copyright Melanie Nelson 2004

Types of Uncertainty
! Uncertainty in quantitative data can be 

calculated
" Store raw data, and calculate on the fly
" Store data and calculated error (e.g., average and 

standard deviation)

! Uncertainty in qualitative data is more difficult 
to handle
" Some types of experiments are inherently less 

certain than others



Copyright Melanie Nelson 2004

Examples of Biological Data with 
Uncertainty
! Protein-protein interactions

" Large scale studies and individual studies have 
differing uncertainties

! Biophysical measurements
" Often include quantitative uncertainties

! Protein function annotation
" Large difference in uncertainty between 

experimental and computational annotations



Copyright Melanie Nelson 2004

Function Annotations: Example of the 
Need to Include Uncertainty

Protein sequence annotated as “sugar kinase”
based on experimental evidence

BLAST shows 45% 
identity, so second 
sequence is also 
annotated as a 
“sugar kinase”

BLAST shows 41% 
identity to second 
protein, so third 
sequence is also 
annotated as a 
“sugar kinase”

Direct comparison of 
protein 1 and protein 
3 reveals only 28% 
identity: not enough 
for confident 
annotation transfer

If a scientist assumes the annotations on 
protein 1 and protein 2 are equally certain, 
an incorrect conclusion may result.



Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

! The problem illustrated by the example is not 
caused by the first annotation transfer

! The problem is caused by the fact that a 
scientist using the data does not know that 
the annotation on protein 2 is less certain 
than the annotation on protein 1

! Solution is to include this uncertainty in the 
data presented to the user



Copyright Melanie Nelson 2004

Including Uncertainty on Annotations
! Include it in the annotation text: annotate protein 2 

as “sugar kinase (by similarity)”
" GenBank and other big sequence databases do this

! Include information about the source of the 
annotation: classify annotation on protein 1 as 
“experimental” and annotationon protein 2 as 
“computational” or “derived”
" Gene Ontology includes evidence classifications

! Link annotation directly to the supporting data
" May be appropriate for database for lab/company that is in 

the protein annotation business



Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

Protein

Protein_id INTEGER

Protein_annotation

Protein_annotation_id INTEGER

Protein_id INTEGER (FK)
Protein_annotation VARCHAR2 (500)
Annotation_support_class_code CHAR (FK)
Comment VARCHAR2 (2000)

Annotation_support_class

Annotation_support_class_code CHAR

Annotation_support_class VARCHAR2 (200)
Annotation_support_class_desc VARCHAR2 (500)

Using the Classification Method:



Copyright Melanie Nelson 2004

Including Uncertainty on Annotations

Protein

Protein_id INTEGER

Protein_annotation

Protein_annotation_id INTEGER

Protein_id INTEGER (FK)
Protein_annotation VARCHAR2 (500)
Comment VARCHAR2 (2000)

Annotation_evidence

Annotation_evidence_id INTEGER

Protein_annotation_id INTEGER (FK)
Evidence_type_code CHAR (FK)
Evidence CLOB

Storing the Supporting Evidence:

Classifying the evidence type is a good idea 
even if you store the evidence: this supports 
queries to find only annotations with 
experimental evidence

In reality, this will probably be a link to a set of 
tables storing the evidence. Decision is made 
based on scope/requirements: do you need to 
query into the evidence or just present it?



Copyright Melanie Nelson 2004

Handling Complex Data Types
! Two types of complex data types are 

common in biological databases
" Data that can be broken into normalized tables, 

but is often used in a flat file format
" Data that is truly complex, and cannot be broken 

into tables

! Both are often left outside of the database or 
stored in a CLOB or BLOB field

! However, there are different considerations in 
the handling of the two types



Copyright Melanie Nelson 2004

Flat File Formats in Biology

! Nucleotide and protein sequence data
" GenBank
" SWISS-PROT
" FASTA

! Protein structure data
" PDB

! Gene expression data
" MAGE-ML (not really a flat file, an XML format)



Copyright Melanie Nelson 2004

Handling Flat File Formatted Data
! Decision to be made: parse into the database or 

store in file system and reference from the 
database?

! Answer depends on:
" Scope of the database

! If data in the flat files is not in scope, it can be difficult to justify 
effort required to parse it into the database

" Resources available for handling data
! Flat file-based systems have fewer integrity constraints, can 

change with little notice, and often have exceptions.
! Often necessary to revisit parsing software

" Politics of your organization
! Some bioinformaticists may prefer flat files because that is 

what all of their tools run on



Copyright Melanie Nelson 2004

Deciding Whether or Not to Parse

! Advantages of parsing data into database 
tables
" More thoroughly integrates data
" Allows more complex queries on the data

! Advantages of leaving data in flat files
" Don’t have to handle inconsistencies and changes 

in flat files
" Data is stored in the format required by many 

bioinformatics tools



Copyright Melanie Nelson 2004

Complex Data Types in Biology
! Complex data types are the raw data for a variety of 

experiments
" Images (Gene expression arrays, microscopy)
" Spectra (NMR, mass spec.)
" Electron density (X-ray crystallography, electron 

microscopy)

! Complex data is usually further analyzed
! The results of these analyses are often stored in 

databases
! The raw data may be stored as a BLOB, or stored in 

the file system and referenced



Copyright Melanie Nelson 2004

Storing Data in Large Object Fields

! Both flat files and complex data types can be stored 
in large object fields (LOBs) or in file system 
(database references path)

! Disadvantages of storing data in LOBs
" Often, data must also exist outside of DB for access by 

specialist programs
! Storing data in two places can lead to inconsistencies

! Disadvantages of storing data in the file system:
" Data is outside of DBMS consistency controls

! If data is changed, references from DB may no longer be 
appropriate or correct

" Data can be moved, making DB references stale



Copyright Melanie Nelson 2004

Parting Words
! Successful design of biological databases requires 

understanding of biology and database principles
" Will not necessarily have both in same person
" Work in teams, and respect the complexity of the field that is not 

your own
! For most research-scale DBs, performance will be adequate 

without any tricks
" Don’t fall into the trap of denormalizing because you’ve heard 

that normalized databases have performance issues
" Denormalize only as a last resort

! For many of the design issues, there is no “right answer”
" Decisions often depend on requirements of the DB
" Field is too young for consensus on best way to handle data
" Don’t get “analysis paralysis”: take your best shot, and learn from 

how it works (or doesn’t!)


