
Copyright Melanie Nelson 2004

Biological Database Design
Week 3

Winter ’04

Melanie Nelson, Ph.D.

Copyright Melanie Nelson 2004

Question and Answer

! Discuss homework
! Q & A on last two weeks’ material

Copyright Melanie Nelson 2004

Introduction to SQL
! SQL = Structured Query Language

" Except that the spec says SQL doesn’t stand for anything

! Standard language for accessing data in relational
databases

! A nonprocedural language
" Say what you want, not how to get it
" A RDBMS has a query optimizer that figures out how to get

the data

! RDBMS purists point out that it is not fully compliant
with relational database theory
" Poor support of domains
" Allows tables without keys

Copyright Melanie Nelson 2004

Introduction to SQL

! Data Definition Language (DDL)
" CREATE TABLE, DROP TABLE
" CREATE INDEX
" Constraints: UNIQUE, PRIMARY KEY, FOREIGN

KEY, NOT NULL

! Data Manipulation Language (DML)
" INSERT, UPDATE, DELETE
" SELECT
" UNION, INTERSECT, EXCEPT

Copyright Melanie Nelson 2004

Example Tables

Bio_molecule

Bio_mol_id INTEGER

Species VARCHAR2 (100)
Bio_mol_type_code CHAR (1) (FK)
Function_desc VARCHAR2 (2000) (O)

Bio_molecule_sequence
Bio_mol_id INTEGER (FK)

Source_database VARCHAR2 (32)
Date_inserted DATETIME
Seq_text CLOB

Z

Bio_molecule_name

Bio_mol_id INTEGER (FK)
Bio_mol_name VARCHAR2 (500)

Primary_name CHAR (1)

Bio_molecule_type
Bio_mol_type_code CHAR (1)
Bio_mol_type VARCHAR2 (32)
Bio_mol_desc VARCHAR2 (500)

Copyright Melanie Nelson 2004

CREATE TABLE

! Use to create a table
! CREATE TABLE table1

(column1 datatype PRIMARY KEY,
column2 datatype)

! Each table should have a primary key
constraint on one or more columns

! Use UNIQUE to enforce alternate keys

Copyright Melanie Nelson 2004

CREATE TABLE

Create a table to store biological molecules

CREATE TABLE Bio_molecule (
Bio_mol_id INTEGER PRIMARY KEY,
Species VARCHAR2 (50) NOT NULL,
Bio_mol_type_code CHAR (1) NOT NULL,
Function_desc VARCHAR2 (2000)

)

PRIMARY KEY is equivalent to UNIQUE, NOT NULL

Copyright Melanie Nelson 2004

Other DDL Commands
! ALTER TABLE

" Add/drop/modify a column of a table
" Not all DBMS support drop and modify

! CREATE INDEX
" Create an index on a column or combination of

columns

" Implementation detail: indexes are used by DBMS
to enforce constraints and optimize lookup

" UNIQUE constraints automatically create index

! DROP TABLE, DROP INDEX

Copyright Melanie Nelson 2004

INSERT

! Use INSERT to get data into a table
! INSERT INTO table1 (column list)

VALUES (value list)
! Column list is optional, but should specify it if

the statement is included in application code
" Remember, the columns in a table are not in any

particular order!

Copyright Melanie Nelson 2004

INSERT

Insert the name “PTP1B” for biological
molecule #1456. It is a primary name.

INSERT INTO Bio_molecule_name
(Bio_mol_id, Bio_mol_name, Primary_name)

VALUES (1456, ‘PTP1B’, ‘Y’)

Text is surrounded by single quotes.

Copyright Melanie Nelson 2004

UPDATE

! Use to alter data in a table
! UPDATE table1

SET column1 = new value,
column2 = new value

WHERE column3 = condition
! WHERE clause is optional. Without it, the

UPDATE will apply to all rows in the table

Copyright Melanie Nelson 2004

UPDATE
Change calmodulin to be the primary name.

UPDATE Bio_molecule_name
SET Primary_name = ‘Y’
WHERE Bio_mol_name = ‘calmodulin’
AND Bio_mol_id = 456

Bio_mol_id portion of where clause is probably
unnecessary.

Copyright Melanie Nelson 2004

DELETE

! Removes row(s) from table
! DELETE FROM table1

WHERE column1 = condition
! WHERE clause is optional. Without it,

DELETE will remove all rows from the table.
" Won’t remove table
" To do this, use DROP TABLE

Copyright Melanie Nelson 2004

DELETE

Delete all Incyte sequence data

DELETE FROM Bio_molecule_sequence
WHERE Source_database = ‘INCYTE’

Copyright Melanie Nelson 2004

SELECT

! Use to get information out of tables
! SELECT column1, column2

FROM table1
WHERE column3 = condition

! WHERE clause is optional. Without it, the
statement returns all rows in the table

Copyright Melanie Nelson 2004

SELECT
! List the primary name and bio_mol_id for all

molecules:
" SELECT Bio_mol_id, Bio_mol_name

FROM Bio_molecule_name
WHERE Primary_name = ‘Y’

! List all biological molecules stored in the
database:
" SELECT *

FROM Bio_molecule

Copyright Melanie Nelson 2004

SELECT DISTINCT

! Use to get a list of distinct values
! SELECT DISTINCT (column1, column2)

FROM table1
! Can have one or more columns in the select

statement
! Multiple columns will provide distinct

combinations of values of those columns

Copyright Melanie Nelson 2004

SELECT DISTINCT
Find out what types of biological molecules are

represented in the Bio_molecule table:

SELECT DISTINCT Bio_mol_type_code
FROM Bio_molecule

Copyright Melanie Nelson 2004

JOIN
! Joins are used to combine information from multiple

tables

! Two types of syntax

! SELECT table1.column1, table2.column2
FROM table1, table2
WHERE table1.column3 = table2.column3

! SELECT table1.column1, table2.column2
FROM table1
JOIN table 2 ON (table1.column3 = table2.column3)

Copyright Melanie Nelson 2004

JOIN
Show the biomolecule type, rather than the code,

for all types represented in Bio_molecule:

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm,

Bio_molecule_type bmt
WHERE bm.Bio_mol_type_code = bmt.Bio_mol_type_code

SELECT DISTINCT Bio_mol_type
FROM Bio_molecule bm
JOIN Bio_molecule_type bmt

ON bm.Bio_mole_type_code = bmt.Bio_mol_type_code

Copyright Melanie Nelson 2004

LIKE and Wildcards
! Wildcard is ‘%’
! Used with keyword LIKE
! Select information on all biomolecules with

the word “kinase” in one of their names
" SELECT bm.Bio_mol_id, Bio_mol_name, Species

FROM Bio_molecule bm,
Bio_molecule_name bmn

WHERE bm.Bio_mol_id = bmn.Bio_mol_id
AND Bio_mol_name LIKE ‘%kinase%’

Contents of strings are case-sensitive

Copyright Melanie Nelson 2004

ORDER BY

! ORDER BY returns rows in order

! List the names assigned to Biomolecule #478
in alphabetical order:
" SELECT bio_mol_name

FROM bio_molecule_name

WHERE bio_mol_id = 478

ORDER BY bio_mol_name ASC

! ASC or DESC

Copyright Melanie Nelson 2004

Aggregate Functions
! COUNT

" Count number of sequences from RefSeq DB
" SELECT COUNT (*)

FROM Bio_molecule_sequence
WHERE Source_database = ‘RefSeq’

! GROUP BY
" Count number of sequences from each DB
" SELECT Source_database, COUNT (*)

FROM Bio_molecule_sequence
GROUP BY Source_database

Copyright Melanie Nelson 2004

Aggregate Functions

! MAX and MIN
" SELECT MAX(Date_inserted)

FROM Bio_molecule_sequence
" Can be used on numeric and date fields

! SUM
! AVG

Copyright Melanie Nelson 2004

String Functions

! DBMS specific implementations
! Usually have at least:

" Substrings
" Length

Copyright Melanie Nelson 2004

Subqueries
! Can nest SQL statements:

" Select all primary names for human proteins:
SELECT Bio_mol_name
FROM Bio_molecule_name
WHERE Bio_mol_id IN (

SELECT Bio_mol_id
FROM Bio_molecule
WHERE Species = ‘Homo sapiens’
AND Bio_mol_type_code = ‘P’

)

Copyright Melanie Nelson 2004

Subqueries
! EXISTS

" Another way to express subsets
SELECT Bio_mol_name
FROM Bio_molecule_name bmn
WHERE EXISTS (

SELECT *
FROM Bio_molecule bm
WHERE Species = ‘Homo sapiens’
AND Bio_mol_type_code = ‘P’
AND bm.Bio_mol_id = bmn.Bio_mol_id

)

Copyright Melanie Nelson 2004

Subqueries

! Can also use NOT IN and NOT EXISTS

! Choice between using JOIN, IN, or EXISTS is
a performance tuning issue

! Optimizer will usually “convert” for you, but
sometimes it pays to optimize, or “tune” the
query yourself

! For more details:
" SQL Performance Tuning, by P. Gulutzan and T.

Pelzer

Copyright Melanie Nelson 2004

Subqueries
! Can join back to the same table
! Show the primary name for all biomolecules for

which there are no other names:
SELECT Bio_mol_name
FROM Bio_molecule_name bmn1
WHERE Primary = ‘Y’
AND NOT EXISTS (

SELECT *
FROM Bio_molecule_name bmn2
WHERE Primary <> ‘Y’
AND bmn2.Bio_mol_id = bmn1.Bio_mol_id

)

Copyright Melanie Nelson 2004

CLOBs

! CLOB = Character Large Object
! Implementation is very DBMS specific
! Usually do not have access to many

functions
" No substring or length functions
" Can’t use in WHERE clause
" Can even be difficult to load in and select out

Copyright Melanie Nelson 2004

Sequence Data

! Bioinformatics has traditionally focused on
handling sequence data

! Many sequence databases are not relational
" Particularly old ones: implemented prior to good

DBMS support for CLOBs
" GenBank and Swiss-Prot: originally flat file DBs,

now have some relational storage
" Lion’s SRS (Sequence Retrieval System)

! Popular way to handle sequences
! Flat file based

Copyright Melanie Nelson 2004

Sources of Sequence Data
! Public

" NCBI
! GenBank = all sequences
! RefSeq = curated sequences

" ExPASY
! SWISS-PROT = highly curated protein sequences
! TrEMBL = uncurated protein sequences (translated EMBL)

! Private
" Incyte (out of the genomics business)
" Celera

! Proprietary
" In house sequencing efforts

Copyright Melanie Nelson 2004

Sequence Data
! A typical sequence “entry” contains:

" Sequence text
" Metadata

! Metadata is not uniform across sources
" Will almost always have the species
" Curated data sources will usually have

! Meaningful name (‘Mitogen-Activated Protein Kinase’)
! Some indication of function

" Uncurated data sources are often annotated by
computer
! Names often “similar to protein X” or “hypothetical

protein”

Copyright Melanie Nelson 2004

Molecule to Sequence Relationship
! The same “protein” or “gene” can be

represented by multiple sequence entries
! Different databases often have slightly

different sequences
" Start codon selection
" Initiator methionine included or not
" SNPs (single nucleotide polymorphisms)
" Sequencing errors
" Splice variants (a headache in their own right)

Copyright Melanie Nelson 2004

Molecule to Sequence Relationship

! Difficult to ascertain when two sequences are the
“same” molecule

! Requires scientists to set appropriate rules for your
database
" I’ve used 90 – 95% identity over at least 50 residues
" Exact cutoffs depend on need for accuracy vs. need for

inclusiveness

! Some databases bypass the issue and treat each
sequence individually
" Potential for lots of data duplication
" Decision is ultimately made based on database scope

Copyright Melanie Nelson 2004

Relational Implementation
Bio_molecule

Bio_mol_id INTEGER

Bio_mol_type_code CHAR(1) (FK)
Species_id INTEGER (FK)

Bio_sequence

Bio_sequence_id INTEGER
Bio_mol_id INTEGER (FK)
Source_id INTEGER (FK)
Source_identifier VARCHAR2(50)
Date_inserted DATETIME
Sequence_text CLOB

Sequence_source
Source_id INTEGER

Source_name VARCHAR2 (100)
Source_desc VARCHAR2 (500)
Source_url VARCHAR2 (500) (O)

Copyright Melanie Nelson 2004

Sequence Text
! Protein and nucleotide

" Nucleotides translate to proteins at 3 base pairs
per amino acid

" DNA sequences contain introns: unexpressed
DNA “inserted” into gene

! Large range in size of sequence text
" Common to study ESTs (~300 – 500 base pairs)
" Smallest proteins are ~50-200 amino acids
" Largest protein is titin, which has ~27,000 amino

acids
" Genomic DNA can be millions of base pairs long

Copyright Melanie Nelson 2004

Searches on Sequence Text
! Exact match

" Not very useful, because small variations can occur in
sequences that are scientifically “the same”

" Used to remove (or flag) obvious redundancies
" Some uses in intellectual property

! Global match (ClustalW)
" Finds optimal alignment over entire length of two

sequences
" Allows insertions and substitutions
" Not good at identifying matching regions within sequences

that also have unmatched regions

Copyright Melanie Nelson 2004

Searches on Sequence Text
! Local match (BLAST)

" Most common method of searching sequence DBs
" Looks for regions of alignment within two sequences
" Allows insertions and substitutions

! Motif or domain searches
" Look for regions of sequence that match known patterns
" Used to infer function
" Search for characteristic motifs (BLOCKS, PRINTS,

PROSITE)
" Search for domains (Pfam, SMART)
" Allow insertions and substitutions

Copyright Melanie Nelson 2004

Sequence Searching in RDBs
! Can’t perform searches on CLOBs
! No easy way to implement the most useful

types of searches in SQL
! Not all substitutions are equal

" Some substitutions are more “conservative” than
others

" Preserve basic chemical properties of amino acid
" Use a “substitution matrix such as BLOSSUM to

specify “cost” of substitutions

Copyright Melanie Nelson 2004

Sequence Searching in RDBs
! Usually search on sequence text outside of

relational database
! BLAST runs on a “database” of sequences in

FASTA format
! Two options

" Store sequences in database, but dump to FASTA for
BLAST

" Store sequences in FASTA flat files, reference these in
database

" Either way, DB and flat files can get out of sync
" Storing sequences in database makes DB “gold standard”

! Oracle is implementing BLAST searches in the
database (Oracle 10g)

Copyright Melanie Nelson 2004

Sequences as Non-Atomic Data
! In some databases, sequences are split into

a table in which each amino acid or base pair
is a row

! This is done when there is a need to store
data about individual positions in the
sequence

! Intermediate solutions: “break out” certain
regions to store as individual residues
" Functional motifs
" Duplicates data

Copyright Melanie Nelson 2004

Sequence Metadata
! Metadata = data about data

" Sequence is primary data
! Some metadata is a property of a particular

sequence
" Biophysical measurements: isoelectric point, extinction

coefficents
! Some metadata is a property of the gene or protein

that the sequence represents
" Biological data: function, subcellular localization

! Species metadata can go either way
" Depends on how you choose to handle orthologs in your

database
" Messiness of functional variation among orthologs means

that a protein/gene is usually best associated with a single
species

Copyright Melanie Nelson 2004

Sequence Species
! Species data is really a hierarchy
! For most applications, storing the full hierarchy is

out of scope
" Exceptions

! Evolutionary biology
! If need ability to perform deep searches on species (for “all

mammals”, etc.)

! Usually need at least scientific name and one
common name
" Some people will also provide basic classifications:

specifics depend on scope of DB

! Can link to/incorporate NCBI’s taxonomy DB
" www.ncbi.nlm.nih.gov/Taxonomy

Copyright Melanie Nelson 2004

Sequence Function
! Two types of function (at least!)

" Biochemical
! The chemical process for which the protein/gene is

responsible
! Examples: kinase, calcium-binding
! Enzymes: cross-reference EC (Enzyme commission) numbers

(ENZYME: us.expasy.org/enzyme)
! Non-enzymes and enzymes: cross-reference molecular

function Gene Ontology (www.geneontology.org)
" Cellular/Process

! The cellular pathway or process in which the protein/gene
participates

! Examples: DNA repair, long term potentiation
! Cross-reference biological process Gene Ontology

Copyright Melanie Nelson 2004

Sequence Function
! Link to disease states may be considered a type of

function, too
! One gene or protein may be involved in multiple

biochemical and cellular functions
" Many enzymes have multiple binding sites
" Many signal transduction proteins participate in multiple

pathways

! There are always exceptions to standard ontologies
! If a scientist’s favorite gene doesn’t fit the standard

ontology, and he can’t explain why, he won’t store
the data!
" Always provide a comment field

Copyright Melanie Nelson 2004

Additional Metadata
! Too numerous to list

" Chromosome
" Ligand binding sites
" Intron locations
" Active site residues

! Highly dependent on interests of group using
database

! Often difficult to classify
! Constantly expanding list
! Some text, some numeric

Copyright Melanie Nelson 2004

Metadata Issues
! Due to incomplete nature of biological

research, the features that are available vary
widely by molecule
" If you try to make a table with a column for each

feature, you will have a lot of NULLs
" Alternatively, making each feature its own table

leads to an explosion of tables in your schema

Copyright Melanie Nelson 2004

Additional Metadata
! Most public databases handle additional metadata as

“feature table”
" GenBank/EMBL feature table

! Each feature has a location (optional: without location, feature is
assumed to apply to entire sequence)

! Features have “keys” (identifying names)
! Features can have qualifiers (in GenBank spec, some are

mandatory)
! Example: primer-binding site feature

" Key = primer_bind
" Optional qualifiers: allele, citation, db_xref, evidence, gene, label,

locus_tag, map, note, standard_name, PCR_conditions
" Swiss-Prot has similar feature design

! Comments apply to entire sequence
" Examples: function, tissue specificity

! Features are assigned a location
" Examples: domain, binding site, post-translationally modified residue

Copyright Melanie Nelson 2004

Entity-Attribute-Value Design
! Standard design pattern used in many fields
! Values in table specifiy the feature, feature qualifier,

and feature value
! If database needs to store features that apply only

to regions of the sequence, add a “location” column
" Requires separate tables for feature and qualifier, to avoid

duplicating location

! Consider making feature type and feature qualifier
lookup tables
" Prevents duplicate names for same feature

! Store text and numeric features separately
" Preserve ability to use numeric aggregate functions
" Store units of numeric features

Copyright Melanie Nelson 2004

Relational Implementation
Bio_molecule

Bio_mol_id INTEGER

Bio_mol_type_code CHAR(1) (FK)
Species_id INTEGER (FK)

Feature

Feature_id INTEGER

Bio_mol_id INTEGER (FK)
Feature_type_id INTEGER (FK)
Feature_location_start INTEGER
Feature_location_end INTEGER
Date_created DATETIME
Created_by INTEGER (FK)

Text_feature_qualifier

Feature_id INTEGER (FK)
Feature_qual_type_id INTEGER (FK)

Feature_qual_value VARCHAR2 (500)
Comment VARCHAR2 (2000)

Numeric_feature_qualifier

Feature_id INTEGER (FK)
Feature_qual_type_id INTEGER (FK)

Feature_qual_value INTEGER
Comment VARCHAR2 (2000)

Feature_type
Feature_type_id INTEGER

Feature_type VARCHAR2 (100)
Feature_type_desc VARCHAR2 (2000)

Feature_qualifier_type
Feature_qual_type_id INTEGER
Feature_qual_type VARCHAR2 (100)
Feature_qual_units VARCHAR2 (32)
Feature_qual_desc VARCHAR2 (2000)

Copyright Melanie Nelson 2004

Difficulty Classifying Biological Data

! Biology is often a very “fuzzy” science
! Data is incomplete: scientists are constantly forming

and discarding hypotheses\
! Nature has a seemingly infinite way of combing

features
! Dilemma

" “Fuzziness” is real and important
" Need “hard” classifications to support truly deep queries
" Compromise

! Make classification system user-extensible
! Provide comment fields into which all of the real ambiguity can

be entered

Copyright Melanie Nelson 2004

Tracking the Source of Data
! It is often desirable to track the source of features

" Particularly if features may be entered by users (rather than
downloaded from source databases only)

" Also desirable because different source databases may provide
contradictory metadata

! Lack of “feature source” tracking has created a problem with
function annotations in public databases
" Sequence A is annotated as a kinase because of sequence

similarity with Sequence B
! Sequence B turns out not to be a kinase
! More likely: Sequence A has same basic structure as Sequence B,

but lacks kinase function

" Sequence C is annotated as a kinase because of similarity to
Sequence A

" If none of the “function transfers” are traceable, the function
annotations cannot be trusted

Copyright Melanie Nelson 2004

Tracking the Source of Data

! In science, it is important to be able to lookup
and evaluate source reference

! Science is incomplete
" Your research contradicts the data in the

database
" Which is in error? Are both right, and we don’t see

the full picture yet?
" Scientist needs to return to original source and

evaulate the experiment

Copyright Melanie Nelson 2004

Tracking the Source of Data
! Gold standard is publication in peer reviewed

journal
! Usually, but not always, indexed in PubMed

(www.ncbi.nlm.nih.gov/PubMed)
! Other sources

" Chemistry journals
" Dissertations (rarely read, let alone cited…)
" Webpages
" Internal company reports

Copyright Melanie Nelson 2004

Tracking the Source of Data
! Reference data is actually quite complex
! In many applications, it is enough to link to PubMed

" I usually provide ability to create internal, non-structured
reference object for things not indexed in PubMed

! If need to allow queries into references, must store the
reference itself
" Find all features supported by papers on which Joe Q.

Scientist is an author
! NCBI allows downloading of an XML version of

reference, which is easy to parse into your database
! Object Management Group Bibliographic Query Service

(OMG-BQS) model
" www.industry.ebi.ac.uk/openBQS
" class diagram is in the specification section

Copyright Melanie Nelson 2004

Sequence Versioning
! Some public databases now version their

sequences
" Example: RefSeq
" Sequence is identified by an accession number and a

version
! NM_005842.2

" In general, only latest version of sequence is available
! Must decide how to handle versioning in your

database
" Keep all versions or latest version only?
" If you keep all versions, do you associate different versions

of the same sequence with each other?
" What happens to any metadata added to the sequence

when a new version comes out?

Copyright Melanie Nelson 2004

Questions to Ask
! Is your primary interest the sequences or the

proteins/genes they represent? (Or both?)
" Tells you whether you can simplify one or the other

! Do you need to search over “aggregate” species
designations?
" Tells you how much of the species hierarchy you need to

store
! Do you need to search on details of supporting data,

or just link to it?
" Tells you whether you need to store all reference data, or

just a link to it
! Do you need to associate data with a particular

version of a sequence?
" Tells you whether you need to track versions

Copyright Melanie Nelson 2004

Additional Data Models
! ENSEMBL data model

" Relational database for ENSEMBL
" www.ensmbl.org/Docs/wiki/html/EnsemblDocs/EnsemblSchemaDiagram.html

! bioSQL
" obda.open-bio.org
" From the Open Bioinformatics Foundation (open-bio.org)

! aMAZE
" Interesting data model for representing function
" www.amaze.ulb.ac.be
" Representing and analysing molecular and cellular function

using the computer. J. van Helden, et. al. (2000) Biol.
Chem. 381:921-935.

Copyright Melanie Nelson 2004

Homework
! Reading for this week’s class

" GenBank portion of the NCBI handbook, UniProt user manual (on
website)

! Homework: Project plans are due next week

! Reading for next week’s class
" Paper discussing GeneLogic’s approach to managing gene expression

data
" Implementing LIMS: A “How To” Guide

! Optional reading for next week’s class
" Nature Genetics paper on MIAME (strongly recommended, but will

require a trip to the library)
" A computer scientist’s explanation of microarrays (strongly

recommended for those not familiar with the technique)
" MAGE-ML paper

